Skip to main content

Advertisement

Log in

A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous transition metal oxides (MTMO) with large surface area, nanocrystalline framework, and controlled porosity have brilliant prospects in fields such as energy, environment, catalysis, or nanomedicine. However, the green, reproducible, and scalable production of MTMO are still a bottleneck for their industrial applications. Although spray-drying methods permit to obtain MTMO in a potentially scalable fashion, the use of highly acidic alcoholic precursor solutions presents two main limitations: corrosion and flammability, which hinder their production in large quantities and lower cost. In this work, we present a general, reproducible, simple, and environment-friendly aerosol method for the synthesis of spherical MTMO particles from mildly acidic aqueous solutions. Acetylacetonate and acetate are used as condensation-controlling agents. Mixed oxides of high valence cations (M(IV) such as Ti, Zr, Ce, and their mixed oxides) were prepared with a yield over 95%, virtually without changing the formulation of the precursor mixture, which can be extended potentially to M(III) or M(V) oxides. The replacement of organic solvents by water allows working in air atmosphere, making this approach much safer, cheaper and environmentally friendly than the current aerosol-based routes. We also present the beneficial effect of mesoporous titania spheres as an additive to nickel electrodes used in the hydrogen evolution reaction, as a demonstrator to potential applications. A threefold increase in the electrocatalytic hydrogen production is observed in mesoporous titania-modified nickel electrodes with respect to a pure nickel catalyst. This performance can be further improved ~25% upon UVA-visible irradiation, due to the photoelectrocatalytic effect of the mesoporous TiO2.

Highlights

  • A green spray-pyrolysis method to produce spherical mesoporous oxides with high surface area and nanocrystalline walls from aqueous solutions is reported.

  • The method can be extended to several oxides such as TiO2, ZrO2, CeO2, and mixed oxides with high yield (95%) and minor precursor changes.

  • A nickel catalyst combined with mesoporous titania presents a threefold increase in the electrocatalytic hydrogen production, and improves further with UVA-visible irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei J, Sun Z, Luo W, Li Y, Elzatahry AA, Al-Enizi AM, Deng Y, Zhao DY (2017) J Am Chem Soc 139:1706–1713

    CAS  Google Scholar 

  2. Alberti S, Soler-Illia GJAA, Azzaroni O (2015) Chem Commun 51:6050–6075

    CAS  Google Scholar 

  3. Serrano E, Linares N, Garcia-Martinez J, Berenguer JR, Luque R, Garcia Martinez J (2013) ChemCatChem 5:825

    Google Scholar 

  4. Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z (2019) Chem Soc Rev 48:3015–3072

    CAS  Google Scholar 

  5. Mercuri M, Pierpauli KA, Berli CLA, Bellino MG (2017) ACS Appl Mater Interfaces 9:16679–16684

    CAS  Google Scholar 

  6. Vallet-Regi M, Colilla M, Izquierdo-Barba I, Manzano M (2018) Molecules 23:47

    Google Scholar 

  7. Debecker DP, Le Bras S, Boissiere C, Chaumonnot A, Sanchez C (2018) Chem Soc Rev 47:4112–4155

    CAS  Google Scholar 

  8. Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1–45

    CAS  Google Scholar 

  9. Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2003) Curr Opin Colloid Interf Sci 8:109–126

    CAS  Google Scholar 

  10. Beitollahi A, Daie AHH, Samie L, Akbarnejad MM (2010) J Alloy Compd 490:311–317

    CAS  Google Scholar 

  11. Arcos D, Vallet-Regí M (2013) Acta Mater 61:890–911

    CAS  Google Scholar 

  12. Nie P, Xu G, Jiang J, Dou H, Wu Y, Zhang Y, Wang J, Shi M, Fu R, Zhang X (2018) Small Methods 2:1700272

    Google Scholar 

  13. Bruinsma PJ, Kim AY, Liu J, Baskaran S (1997) Chem Mater 9:2507–2512

    CAS  Google Scholar 

  14. Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223–226

    CAS  Google Scholar 

  15. Kuai L, Wang J, Ming T, Fang C, Sun Z, Geng B, Wang J (2015) Sci Rep 5:9923–9928.

  16. Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B (2014) 53, Angew Chem Int Ed 29:7547–7551

    Google Scholar 

  17. Li J, Wei X, Lin YS, Su D (2008) J Membr Sci 312:186–192

    CAS  Google Scholar 

  18. Debecker DP, Hulea V, Mutin PH (2013) Appl Catal A Gen 451:192–206

    CAS  Google Scholar 

  19. Anastas PT, Warner JC (1998) Green chemistry: theory and practice, Oxford University Press, New York, p 30

  20. Mann S, Burkett S, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT (1997) Chem Mater 9:2300–2310

    CAS  Google Scholar 

  21. Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093–4138

    Google Scholar 

  22. Backov R (2006) Soft Matter 2:452–464

    CAS  Google Scholar 

  23. Nicole L, Rozes L, Sanchez C (2010) Adv Mater 22:3208–3214

    CAS  Google Scholar 

  24. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole C (2010) R Chim 13:3–39.

  25. Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Adv Mater 23:599–623

    CAS  Google Scholar 

  26. Qiao L, Swihart MT (2017) Adv Colloid Interfac 244:199–266

    CAS  Google Scholar 

  27. Zagaynov IV, Vorobiev AV, Kutsev SV (2015) Mater Lett 139:237–240

    CAS  Google Scholar 

  28. Zhong J, Liang S, Zhao J, Duo W, Wu W, Liu H, Wang X, Dong Chen Y, Bing Cheng J (2012) Eur Ceram Soc 32:3407–3414

    CAS  Google Scholar 

  29. Pitchumani R, Heiszwolf JJ, Schmidt-Ott A, Coppens M-O (2009) Micropor Mesopor Mat 120:39–46

    CAS  Google Scholar 

  30. Debecker DP, Hulea V, Mutin PH (2013) Appl Catal A Gen 451:192–206

    CAS  Google Scholar 

  31. Yu C, Tian B, Zhao D (2003) Curr Opin Solid St M 7:191–197

    CAS  Google Scholar 

  32. Araujo PZ, Luca V, Bozzano PB, Bianchi HL, Soler-Illia GJAA, Blesa M, Appl ACS (2010) Mater Inter 2:1663–1673

    CAS  Google Scholar 

  33. Bayu Dani Nandiyanto A, Okuyama K (2011) Adv Powder Technol 22:1–19

    Google Scholar 

  34. Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Takahashi M (2018) J Sol-Gel Sci Technol 89:216–224

    Google Scholar 

  35. Khan H, Rigamonti MG, Patience GS, Boffito DC (2018) Appl Catal B 226:311–323

    CAS  Google Scholar 

  36. Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Takahashi M (2019) J Mater Chem A 7:25290–25296

    CAS  Google Scholar 

  37. Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Phys Chem Chem Phys 19:28249–28262

    CAS  Google Scholar 

  38. Lu T, Wang Y, Wang Y, Zhou L, Yang X, Su Y (2017) J Mater Sci Technol 33:300–304

    Google Scholar 

  39. Schubert U (2003) in Comprehensive Coordination Chemistry II, McCleverty, JA, Meyer, TJ, Eds. Pergamon 629–656

  40. Heshmatpour F, Aghakhanpour RB (2012) Adv Powder Technol 23:80–87

    CAS  Google Scholar 

  41. Lan L, Chen S, Caoa Y, Zhao M, Gong M, Chen Y (2015) J Colloid Interf Sci 450:404–416

    CAS  Google Scholar 

  42. Singh P, Hegde MS (2008) J Solid State Chem 181:3248–3256

    CAS  Google Scholar 

  43. Xiong H, Gao T, Li K, Liu Y, Ma Y, Liu J, Qiao Z-A, Song S, Dai S (2019) Adv Sci 6:1801543

    Google Scholar 

  44. Ahonen PP, Tapper U, Kauppinen EI, Joubert JC, Deschanvres JL (2001) Mater Sci Eng A315:113–121

    CAS  Google Scholar 

  45. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. San Diego: Academic

  46. Rodríguez-Carvajal J (1993) Phys B 192:55–69

    Google Scholar 

  47. Boettcher SW, Fan J, Tsung C-K, Shi Q, Stucky GD (2007) Acc Chem Res 40:784–792

    CAS  Google Scholar 

  48. Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) J Mater Chem 14:1879–1886

    CAS  Google Scholar 

  49. Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Phys Chem Chem Phys 19:28249–28262

    CAS  Google Scholar 

  50. Grosso D, Soler-Illia GJAA, Crepaldi EL, Charleux B, Sanchez C (2003) Adv Funct Mater 13:37–42

    CAS  Google Scholar 

  51. Soler-Illia GJAA, Innocenzi P (2006) Chem Eur J 12:4478–4494

    CAS  Google Scholar 

  52. Zelcer A, Soler-Illia GJAA (2013) J Mater Chem C 1:1359–1367

    CAS  Google Scholar 

  53. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. First Edition. Principles, methodology and applications. London: Academic Press

  54. Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) J Mater Chem 20:4512–4528

    CAS  Google Scholar 

  55. Li C, Ming T, Wang J, Wang J, Yu JC, Yu S (2014) J Catal 310:84–90

    CAS  Google Scholar 

  56. Franceschini EA, Gomez MJ, Lacconi GI (2019) J Energy Chem 29:79–87

    Google Scholar 

  57. Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X.-R, Fu H (2011) Cryst Eng Comm 13:2994

  58. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) J Am Chem Soc 131:3152–3153

    CAS  Google Scholar 

  59. Wang A, Jing H (2014) Dalton Trans 43:1011–1018

    CAS  Google Scholar 

  60. Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X (2011) J Am Chem Soc 133:16414–16417

    CAS  Google Scholar 

  61. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Adv Funct Mater 25:5706–5713

    CAS  Google Scholar 

  62. Kreysa G, Hakansson B, Ekdunge P (1988) Electrochim Acta 33:1351–1357

    CAS  Google Scholar 

  63. Allen NS, Mahdjoub N, Vishnyakov V, Kelly PJ, Kriek RJ (2018) Polym Degrad Stabil 150:31–36

    CAS  Google Scholar 

  64. Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Tang Q, Mueller M, Takahashi M (2019) Chem Mater 31:322–330

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-3625, PICT Start Up 2017 –4651, PICT 2017-0250, FSNANO 2010-007, Mincyt-UOttawa OT-17/02) and CONICET. MVL acknowledges a postdoctoral fellowship from CONICET. AZ, EAF, and GJAAS-I are permanent research fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galo J. A. A. Soler-Illia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelcer, A., Franceschini, E.A., Lombardo, M.V. et al. A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions. J Sol-Gel Sci Technol 94, 195–204 (2020). https://doi.org/10.1007/s10971-019-05175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05175-0

Keywords

Navigation