Skip to main content
Log in

2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysis—condensation of 2-triethoxysilylazulene

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

As the raw materials of organic–inorganic dyes, 2-triethoxysilylazulene derivatives (2a2d) were synthesized via a cross-coupling reaction between a 2-haloazulene derivative (1a1d) and triethoxysilane in the presence of a rhodium catalyst. Compounds 2a2d were obtained as colored liquids and characterized using NMR and mass spectroscopy. The UV–Vis spectra of 2a2d were red-shifted as compared to that of hydrogen-substituted azulene derivatives (3a3d). This was attributed to the extended conjugated system and specific properties of the azulene moiety. Compound 2a was polymerized via a hydrolysis–condensation reaction, and the resulting polymer (P2a) was characterized using GPC, 29Si NMR, and FT-IR spectroscopy. The UV–Vis spectrum of P2a was red-shifted as compared to that of 2a, which was attributed to the π–π interactions.

2-Triethoxysilylazulene derivatives show excellent chromogenic properties. The absorption wavelength is dependent on the type of functional groups located at the 1,3-position.

Highlights

  • 2-Triethoxysilylazulene derivatives were synthesized via a cross-coupling reaction between a 2-haloazulene derivative and triethoxysilane.

  • The UV–Vis spectra of these derivatives are dependent on the type of functional groups.

  • 2-Triethoxysilylazulene polymer was prepared via a hydrolysis–condensation reaction.

  • The UV–Vis spectrum of the polymer was slightly red-shifted as compared to that of the monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) J Mater Chem 20:9306–9321

    Article  Google Scholar 

  2. Sánchez del Río M, Martinetto P, Reyes-Valerio C, Doopyhée E, Suárez M (2006) Archaeometry 48:115–130

    Article  Google Scholar 

  3. Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2014) Chem Mater 26:221–238

    Article  Google Scholar 

  4. Choi DH, Park JH, Lee JH, Lee SD (2000) Thin Solid Films 360:213–221

    Article  Google Scholar 

  5. Chaput F, Riehl D, Boilot JP, Cargnelli K, Canva M, Lévy Y, Brun A (1996) Chem Mater 8:312–314

    Article  Google Scholar 

  6. Serwadczak M, Kucharski S (2006) J Sol–Gel Sci Technol 37:57–62

    Article  Google Scholar 

  7. Demirel GB, Dilsiz N, Çakmak M, Çaykara T (2011) J Mater Chem 21:3189–3196

    Article  Google Scholar 

  8. McDonald RN, Richmond JM, Curtis JR, Petty HE, Hoskins TL (1976) J Org Chem 41:1811–1821

    Article  Google Scholar 

  9. Anderson Jr. AG, Steckler BM (1959) J Am Chem Soc 81:4941–4946

    Article  Google Scholar 

  10. Lemal D, Goldman G (1988) J Chem Educ 65:923–925

    Article  Google Scholar 

  11. Michl J, Thulstrup E (1976) Tetrahedron 32:205–209

    Article  Google Scholar 

  12. Yamaguchi Y, Ogawa K, Nakayama K, Ohba Y, Katagiri H (2013) J Am Chem Soc 135:19095–19098

    Article  Google Scholar 

  13. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  14. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  15. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  17. Armarego WLF, Chai C (2012) Purification of laboratory chemicals, 7th ed. Butterworth-Heinemann, Oxford, UK.

  18. Zhang J, Petoud S (2008) Chem Eur J 14:1264–1272

    Article  Google Scholar 

  19. Koch M, Blacque O, Venkatesan K (2012) Org Lett 14:1580–1583

    Article  Google Scholar 

  20. Ito S, Nomura A, Morita N, Kabuto C, Kobayashi H, Maejima S, Fujimori K, Yasunami M (2002) J Org Chem 67:7295–7302

    Article  Google Scholar 

  21. Nozoe T, Imafuku K, Yin B, Honda M, Goto Y, Hara Y, Andoh T, Yamamoto H (1988) Bull Chem Soc Jpn 61:2531–2539

    Article  Google Scholar 

  22. Nozoe T, Takase K, Kato M, Nogi T (1971) Tetrahedron 27:6023–6035

    Article  Google Scholar 

  23. Nihon University (2008) Process for production of azulene derivatives and azulene derivatives. Japan patent JP 2008-285435A.

  24. Bing LB, Yun-Shan L (2010) J Heterocycl Chem 48:205–208

    Google Scholar 

  25. McDonald RN, Richmond JM, Curtis JR, Petty HE, Hoskins TL (1976) J Org Chem 41:1811–1821

    Article  Google Scholar 

  26. Morita T, Takase K (1982) Bull Chem Soc Jpn 55:1144–1152

    Article  Google Scholar 

  27. Ueno T, Toda H, Yasunami M, Yoshifuji M (1996) Bull Chem Soc Jpn 69:1645–1656

    Article  Google Scholar 

  28. Murata M, Yamasaki H, Ueta T, Nagata M, Ishikura M, Watanabe S, Masuda Y (2007) Tetrahedron 63:4087–4094

    Article  Google Scholar 

  29. Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y (2002) Org Lett 4:1843–1845

    Article  Google Scholar 

  30. Yamanoi Y, Nishihara H (2006) Tetrahedron Lett 47:7157–7161

    Article  Google Scholar 

  31. Seganish WM, Handy CJ, DeShong P (2005) J Org Chem 70:8948–8955

    Article  Google Scholar 

  32. Manoso AS, DeShong P (2001) J Org Chem 66:7449–7455

    Article  Google Scholar 

  33. Denmark SE, Kallemeyn JM (2003) Org Lett 5:3483–3486

    Article  Google Scholar 

  34. Handy CJ, Manoso AS, McElroy WT, Seganish WM, DeShong P (2005) Tetrahedron 61:12201–12225

    Article  Google Scholar 

  35. Tétreault N, Muthyala RS, Liu RSH, Steer RP (1999) J Phys Chem A 103:2524–2531

    Article  Google Scholar 

  36. Shevyakov SV, Li H, Muthyala R, Asato AE, Croney JC, Jameson DM, Liu RSH (2003) J Phys Chem A 107:3295–3299

    Article  Google Scholar 

  37. Patalinghug WC, Chang M, Solis J (2007) J Chem Educ 84:1945–1947

    Article  Google Scholar 

  38. Foggi P, Neuwahl FVR, Moroni L, Salvi PR (2003) J Phys Chem A 107:1689–1696

    Article  Google Scholar 

  39. Walton DRM (1965) J Organomet Chem 3:438–441

    Article  Google Scholar 

  40. Maeda H, Maeda T, Mizuno K (2012) Molecules 17:5108–5125

    Article  Google Scholar 

  41. Abe Y, Gunji T (2004) Prog Polym Sci 29:149–182

    Article  Google Scholar 

  42. Gunji T, Tozune T, Kaburaki H, Arimitsu K, Abe Y (2013) J Polym Sci A 51:4732–4741

    Article  Google Scholar 

  43. Gunji T, Kaburagi H, Tsukada S, Abe Y (2015) J Sol–Gel Sci Technol 75:564–573

    Article  Google Scholar 

  44. Hayami R, Nishikawa I, Hisa T, Nakashima H, Sato Y, Ideno Y, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2018) J Sol–Gel Sci Technol 88:660–670

    Article  Google Scholar 

  45. Yoldas BE (1986) J Non-Cryst Solids 82:11–23

    Article  Google Scholar 

  46. Sun X, Xu Y, Jiang D, Yang D, Wu D, Sun Y, Yang Y, Yuan H, Deng F (2006) Colloids Surf A 289:149–157

    Article  Google Scholar 

  47. Yoshinaga I, Yamada N, Katayama S (2003) J Sol–Gel Sci Technol 28:65–70

    Article  Google Scholar 

  48. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) J Sol–Gel Sci Technol 39:175–183

    Article  Google Scholar 

  49. Olejniczak Z, Łęczka M, Cholewa-Kowalska K, Wojtach K, Rokita M, Mozgawa W (2005) J Mol Struct 744–747:465–471

    Article  Google Scholar 

  50. Mori H, Yamada M (2012) Colloid Polym Sci 290:1879–1891

    Article  Google Scholar 

  51. Pescarmona PP, Maschmeyer T (2001) Aust J Chem 54:583–596

    Article  Google Scholar 

  52. Li YS, Wang Y, Ceesay S (2009) Spectrochim Acta A 71:1819–1824

    Article  Google Scholar 

  53. Amicangelo JC, Leenstra WR (2003) J Am Chem Soc 125:14698–14699

    Article  Google Scholar 

  54. Murai M, Amir E, Amir RJ, Hawker CJ (2012) Chem Sci 3:2721–2725

    Article  Google Scholar 

  55. Zhuo D, Gu A, Liang G, Hu JT, Zhou C, Yuan L (2011) Polym Adv Technol 22:2617–2625

    Article  Google Scholar 

  56. Chang CC, Huang FH, Lin ZM, Cheng LF (2015) J Coat Technol Res 12:731–738

    Article  Google Scholar 

  57. Seifert A, Ladewig K, Schönherr P, Hofmann K, Lungwitz R, Roth I, Pohlers A, Hoyer W, Baumann G, Schulze S, Hietschold M, Moszner N, Burtscher P, Spange S (2010) J Sol–Gel Sci Technol 53:328–341

    Article  Google Scholar 

  58. Jain S, Goossens JGP, van Duin M (2006) Macromol Symp 233:225–234

    Article  Google Scholar 

  59. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Chem Mater 20:1548–1554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayami, R., Izumiya, T., Kokaji, T. et al. 2-Triethoxysilylazulene derivatives: Syntheses and optical properties, and hydrolysis—condensation of 2-triethoxysilylazulene. J Sol-Gel Sci Technol 91, 399–406 (2019). https://doi.org/10.1007/s10971-019-04991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04991-8

Keywords

Navigation