Skip to main content

Advertisement

Log in

Synthesis of dye functionalized xerogels via nucleophilic aromatic substitution of fluoro aromatic compounds with aminosilanes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The one-pot synthesis of inorganic–organic hybrid materials via combination of sol–gel process and nucleophilic aromatic substitution reaction of various fluoro aromatic compounds and 3-aminopropyltrimethoxysilane has been studied. Both, nucleophilic aromatic substitution reaction and sol–gel process can be accomplished in the same reaction vessel due to the sol–gel precursor tetraethoxysilane acting as solvent during the first reaction step. Hydrogen fluoride, which forms as a by-product of the substitution reaction, is trapped by both silane species present and subsequently serves as catalyst during the sol–gel process. The obtained materials can be classified as type II xerogels, because of the covalent linkage between organic chromophor and inorganic silicon network. Fluoro aromatic compounds with different reactivities for nucleophilic aromatic substitution reactions containing azo, azomethine, and diphenylamine groups were used in order to (1) demonstrate the synthetic concept and (2) fine-tune the optical properties of the resulting chromophoric xerogels. The final chromophor content within the xerogels was varied by modifying the ratio of organosilicon precursor and tetraethoxysilane. All obtained organic–inorganic hybrid materials were characterized in detail using solid state NMR- and UV/vis spectroscopy. Latter one gave experimental confirmation of the partial hydrolysis of azomethine dyes in the xerogels, while no decomposition of azo or diphenylamine dyes was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APS:

3-Aminopropyltrimethoxysilane

SNAr:

Nucleophilic aromatic substitution

TEOS:

Tetraethoxysilane

CP:

Cross polarization

MAS:

Magic angle spinning

TG:

Thermogravimetric analysis

FNA:

4-Fluoro-3-nitroaniline

References

  1. Brinker C, Scherer G (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

  2. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  3. Gomez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  4. Sanchez C, Lebeau B, Chaput F, Boilot J-P (2003) Optical properties of functional hybrid organic-inorganic nanocomposites. Adv Mater 15:1969–1994

    Article  CAS  Google Scholar 

  5. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17:1225–1236

    Article  CAS  Google Scholar 

  6. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  ADS  CAS  Google Scholar 

  7. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  8. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    Article  CAS  Google Scholar 

  9. Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun 680–682

  10. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 12:1403–1419

    Article  CAS  Google Scholar 

  11. Sanchez C, Ribot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18:1007–1047

    CAS  Google Scholar 

  12. Clark JH, Macquarrie DJ (1998) Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem Commun 853–860

  13. Roth I, Jbarah AA, Holze R, Friedrich M, Spange S (2006) 2-Nitro-1, 4-diaminobenzene-functionalized poly(vinyl amine)s as water-soluble UV-vis-sensitive pH sensors. Macromol Rapid Commun 27:193–199

    Article  CAS  Google Scholar 

  14. Roth I, Spange S (2005) Kinetic studies on the nucleophilic aromatic substitution of fluoronitrobenzene derivatives with polyvinylamine in water mediated by 2, 6-O-dimethyl-beta-cyclodextrin. Macromolecules 38:10034–10041

    Article  ADS  CAS  Google Scholar 

  15. Roth I, Spange S (2001) Nucleophilic substitution of 4-fluoronitrobenzene with polyvinylamine in water mediated by cyclodextrins. Macromol Rapid Commun 22:1288–1291

    Article  CAS  Google Scholar 

  16. Roth I, Simon F, Bellmann C, Seifert A, Spange S (2006) Fabrication of silica particles functionalized with chromophores and amino groups using synergism of poly(vinylamine) adsorption and nucleophilic aromatic substitution with fluoroaromatics. Chem Mater 18:4730–4739

    Article  CAS  Google Scholar 

  17. Seifert A, Roth I, Spange S, Moszner N (2003) Nucleophile aromatische Substitution als Werkzeug zur Funktionalisierung von Polyvinylamin und Hybridmaterialien. Macromol Chem Phys 204:F30–F31

    Google Scholar 

  18. Schreiter K, Spange S (2008) Amino-acid-functionalized solvatochromic probes. J Phys Org Chem 21:242–250

    Article  CAS  Google Scholar 

  19. Spange S, Hofmann K, Walfort B, Rueffer T, Lang H (2005) Chiral 1, 2- and 1, 3-diol-functionalized chromophores as Lego building blocks for coupled structures. J Org Chem 70:8564–8567

    Article  PubMed  CAS  Google Scholar 

  20. Suhr H (1965) Nucleophilic substitutions. V. Reaction of 4-nitrofluorobenzene and primary amines. Ann 687:175–182

    CAS  Google Scholar 

  21. Alvaro CES, Nudelman NS (2005) Role of hydrogen-bonded nucleophiles in aromatic nucleophilic substitutions in aprotic solvents. Reactions of halonitrobenzenes with ethylenediamine, 3-dimethylamino-1-propylamine and histamine in toluene. J Phys Org Chem 18:880–885

    Article  CAS  Google Scholar 

  22. Seifert A, Spange S, Mueller H, Hesse S, Jaeger C (2003) Fabrication of chromophoric xerogels by synergistic combination of nucleophilic aromatic substitution and the sol-gel process. J Sol-Gel Sci Technol 26:77–81

    Article  CAS  Google Scholar 

  23. Spange S, Seifert A, Muller H, Hesse S, Jager C (2002) A one-pot synthesis of chromophoric silicate-based xerogels. Angew Chem Int Ed 41:1729–1732

    Article  CAS  Google Scholar 

  24. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The pi* scale of solvent polarities. J Am Chem Soc 99:6027–6038

    Article  CAS  Google Scholar 

  25. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi*, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  26. Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The beta -scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383

    Article  CAS  Google Scholar 

  27. Laurence C, Nicolet P, Dalati MT, Abboud J-LM, Notario R (1994) The empirical treatment of solvent-solute interactions: 15 years of pi*. J Phys Chem 98:5807–5816

    Article  CAS  Google Scholar 

  28. Helburn R, Dijiba Y, Mansour G, Maxka J (1998) New hydrophobic pi* indicators. Solvatochromic properties and interactions in micellar solutions. Langmuir 14:7147–7154

    Article  CAS  Google Scholar 

  29. Helburn R, Ullah N, Mansour G, Maxka J (1997) Towards a homologous structural series of solvatochromic pi indicators. J Phys Org Chem 10:42–48

    Article  CAS  Google Scholar 

  30. Moszner N, Klapdohr S (2004) Nanotechnology for dental composites. Int J Nanotechnol 1:130–156

    CAS  Google Scholar 

  31. Matsui K, Soeda Y, Otaguro K, Kuroda T (1965) Halobenzene reactive dyes. VII. Synthesis and reactivity of primary condensation products of 1, 3-difluoro-4, 6-dinitrobenzene. Kogyo Kagaku Zasshi 68:507–512

    CAS  Google Scholar 

  32. Hantzsch A (1910) Chromisomerism and Homochromisomerism of Nitroanilines. Ber 43:1662–1685

    CAS  Google Scholar 

  33. Yagupolskij LM, Gandelsman LZ (1965) The effect of substituents on the color of N,N-dialkylamino azo dyes and their salts. Zh Obshch Khim 35:1252

    Google Scholar 

  34. Mustroph H (1987) Studies on UV/visible absorption spectra of azo dyes. XVII. A modified increment system for the calculation of the absorption maxima of polysubstituted azobenzenes. J Prakt Chem 329:157–161

    Article  CAS  Google Scholar 

  35. Mustroph H, Marx J, Epperlein J (1983) Studies of the photochemical fading of tautomeric azo dyes. II. Fading studies of 1-(phenylazo)-2-naphthols in cellulose acetate. Acta Polym 34:336–339

    Article  CAS  Google Scholar 

  36. Neunhoeffer O, Ruske W (1957) Nitro-substituted N-(4-phenylazophenyl)amino acids. Ann 610:143–156

    CAS  Google Scholar 

  37. Borsche W (1923) Beta -Nitroarylhydroxylamines. I. beta -2, 4- and beta -2, 6-dinitrophenylhydroxylamine. Chem Ber 56B:1494–1501

    CAS  Google Scholar 

  38. Huggett AC, Cone JL, Thorgeirsson SS, Roller PP (1987) Novel synthesis and spectral characterization of an N-acetoxyarylamine: N-acetoxy-2, 4-dinitrophenylamine. J Org Chem 52:4933–4937

    Article  CAS  Google Scholar 

  39. Hofmann K, Schreiter K, Seifert A, Ruffer T, Lang H, Spange S (2008) Solvatochromism and linear solvation energy relationship of diol- and proline-functionalized azo dyes using the Kamlet-Taft and Catalan solvent parameter sets. New J Chem 32:2180–2188

    Article  CAS  Google Scholar 

  40. Abramenko VL, Sergienko VS (2002) Molecular complexes and chelates of dioxomolybdenum(VI) with salicylidene-RF-phenylimines (HL). The crystal and molecular structures of dioxo(salicylidene-3-(4-)-F-phenyliminato)molybdenum(VI), MoO2L2. Zh Neorg Khim 47:915–923

    CAS  Google Scholar 

  41. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Joseph R, Zhang S, Ford WT (1996) Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy. Macromolecules 29:1305–1312

    Article  ADS  CAS  Google Scholar 

  43. Milligan RF (1950) Higher members of the Wurster salts series. J Am Chem Soc 72:2775–2776

    Article  CAS  Google Scholar 

  44. Enkelmann V (1991) New building blocks for organic metals. Angew Chem 103:1142–1144

    Article  CAS  Google Scholar 

  45. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Spange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, A., Ladewig, K., Schönherr, P. et al. Synthesis of dye functionalized xerogels via nucleophilic aromatic substitution of fluoro aromatic compounds with aminosilanes. J Sol-Gel Sci Technol 53, 328–341 (2010). https://doi.org/10.1007/s10971-009-2096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2096-x

Keywords

Navigation