Skip to main content
Log in

Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new family of silsesquioxane hybrids was synthesized by hydrolytic condensation of a triethoxysilane precursor, R-Si(OCH2CH3)3, R = -CH2CH2CH2N[CH2CH2COOCH2CH2N(CH3)2]2, derived from 2-(dimethylamino)ethyl acrylate. Condensation of the triethoxysilane precursor proceeded as a homogeneous system in methanol in the presence of aqueous HF solution (3.2 %) to afford the water-soluble silsesquioxane hybrid having a high density of chemically bonded peripheral tertiary amino groups on the outermost surface, as confirmed by nuclear magnetic resonance and Fourier transform infrared analyses. The relatively low polydispersity (M w/M n  = 1.33) and a reasonable molecular weight (M n  = 2700), corresponding to species having 6–12 silicon atoms, were confirmed by size exclusion chromatography. The size of the silsesquioxane hybrid (1.7 nm) was also determined by X-ray diffraction. Co-condensation of tetraethoxysilane (TEOS) with the triethoxysilane precursor was carried out under different feed ratios, and water-soluble products were obtained in the cases of TEOS molar ratio up to 40 %. Quaternization reaction of the tertiary amine-containing hybrids with methyl iodide led to cationic silsesquioxane hybrids containing quaternized amine functionalities, which showed good solubility in polar solvents. Scanning force microscopy measurements indicated the formation of the cationic silsesquioxane hybrids having relatively narrow size distribution with average particle diameter (about 2.0 nm) without aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998

    Article  Google Scholar 

  2. Cui L, Chen D, Zhu L (2008) Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano 2:921–927

    Article  CAS  Google Scholar 

  3. Zou Q-C, Yan Q-J, Song G-W, Zhang S-L, Wu L-M (2007) Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens Bioelectron 22:1461–1465

    Article  CAS  Google Scholar 

  4. Pu K-Y, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646

    Article  CAS  Google Scholar 

  5. Zhao F, Wan C, Bao X, Kandasubramanian B (2009) Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsesquioxane. J Colloid Interface Sci 333:164–170

    Article  CAS  Google Scholar 

  6. Wu GJ, Su ZH (2006) Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly. Chem Mater 18:3726–3732

    Article  CAS  Google Scholar 

  7. Li Y-C, Mannen S, Schulz J, Grunlan JC (2011) Growth and fire protection behavior of POSS-based multilayer thin films. J Mater Chem 21:3060–3069

    Article  CAS  Google Scholar 

  8. Frankamp BL, Fischer NO, Hong R, Srivastava S, Rotello VM (2006) Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles. Chem Mater 18:956–959

    Article  CAS  Google Scholar 

  9. Nguyen TP, Hesemann P, Tran TML, Moreau JJE (2010) Nanostructured polysilsesquioxanes bearing amine and ammonium groups by micelle templating using anionic surfactants. J Mater Chem 20:3910–3917

    Article  CAS  Google Scholar 

  10. Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ (2000) Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33:1940–1947

    Article  CAS  Google Scholar 

  11. Feher FJ, Budzichowski TA (1995) Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14:3239–3253

    Article  CAS  Google Scholar 

  12. Voronkov MG, Lavrent’yev VI (1982) Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem 102:199–236

    Article  CAS  Google Scholar 

  13. Pescarmona PP, Maschmeyer T (2001) Oligomeric silsesquioxanes: synthesis, characterization and selected applications. Aust J Chem 54:583–596

    Article  CAS  Google Scholar 

  14. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  Google Scholar 

  15. Sulaiman S, Bhaskar A, Zhang J, Guda R, Goodson T III, Laine RM (2008) Molecules with perfect cubic symmetry as nanobuilding blocks for 3-D assemblies. Elaboration of octavinylsilsesquioxane. Unusual luminescence shifts may indicate extended conjugation involving the silsesquioxane core. Chem Mater 20:5563–5573

    Article  CAS  Google Scholar 

  16. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  17. Laine RM (2005) Nano-building blocks based on the [OSiO1.5] x (x=6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744

    Article  CAS  Google Scholar 

  18. Mori H, Lanzendörfer MG, Müller AHE, Klee JE (2004) Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules 37:5228–5238

    Article  CAS  Google Scholar 

  19. Mori H, Müller AHE, Klee JE (2003) Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles. J Am Chem Soc 125:3712–3713

    Article  CAS  Google Scholar 

  20. Mori H, Lanzendörfer MG, Mülller AHE, Klee JE (2004) Organic–inorganic nano-assembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media. Langmuir 20:1934–1944

    Article  CAS  Google Scholar 

  21. Schumacher M, Ruppel M, Kohlbrecher J, Burkhardt M, Plamper F, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer 50:1908–1917

    Article  CAS  Google Scholar 

  22. Muthukrishnan S, Plamper F, Mori H, Müller AHE (2005) Synthesis and characterization of glycomethacrylate hybrid stars from silsesquioxane nanoparticles. Macromolecules 38:10631–10642

    Article  CAS  Google Scholar 

  23. Xua J, Shi W (2006) Synthesis and crystallization kinetics of silsesquioxane-based hybrid star poly(ε-caprolactone). Polymer 47:5161–5173

    Article  Google Scholar 

  24. Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V, Tannenbaum R, Tsukruk VV (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209

    Article  CAS  Google Scholar 

  25. Schumacher M, Ruppel M, Yuan J, Schmalz H, Colombani O, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrids based on amphiphilic block copolymer micelles and functional silsesquioxane nanoparticles. Langmuir 25:3407–3417

    Article  CAS  Google Scholar 

  26. Bliznyuk VN, Tereshchenko TA, Gumenna MA, Gomza YP, Shevchuk AV, Klimenko NS, Shevchenko VV (2008) Structure of segmented poly(ether urethane)s containing amino and hydroxyl functionalized polyhedral oligomeric silsesquioxanes (POSS). Polymer 49:2298–2305

    Article  CAS  Google Scholar 

  27. Mori H, Miyamura Y, Endo T (2007) Synthesis and characterization of water-soluble silsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilane derived from 2-hydroxyethyl acrylate. Langmuir 23:9014–9023

    Article  CAS  Google Scholar 

  28. Mori H, Saito S (2011) Smart organic–inorganic hybrids based on the complexation of amino acid-based polymers and water-soluble silsesquioxane nanoparticles. React Funct Polym 10:1023–1032

    Article  Google Scholar 

  29. Mori H, Saito S, Shoji K (2011) Complexation of amino-acid-based block copolymers with dual thermoresponsive properties and water-soluble silsesquioxane nanoparticles. Macromol Chem Phys 212:2558–2572

    Article  CAS  Google Scholar 

  30. Mori H, Miyamura Y, Endo T (2009) Synthesis and characterization of water-soluble SiO1.5/TiO2 hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups. Mater Chem Phys 115:287–295

    Article  CAS  Google Scholar 

  31. Mori H, Sada C, Konno T, Koichiro Y (2011) Synthesis and characterization of low-refractive-index fluorinated silsesquioxane-based hybrids. Polymer 52:5452–5463

    Article  CAS  Google Scholar 

  32. Zeng F, Shen Y, Zhu S, Pelton R (2000) Synthesis and characterization of comb-branched polyelectrolytes. 1. Preparation of cationic macromonomer of 2-(dimethylamino)ethyl methacrylate by atom transfer radical polymerization. Macromolecules 33:1628–1635

    Article  CAS  Google Scholar 

  33. Brown JF Jr, Vogt LH Jr, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120–1125

    Article  CAS  Google Scholar 

  34. Brown JF Jr, Vogt LH Jr (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313–4317

    Article  CAS  Google Scholar 

  35. Park ES, Ro HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem Mater 20:1548–1554

    Article  CAS  Google Scholar 

  36. Bartsch M, Bornhauser P, Calzaferri G, Imhof R (1994) H8Si8O12 — a model for the vibrational structure of zeolite-A. J Phys Chem 98:2817–2831

    Article  Google Scholar 

  37. Jerman I, Vuk AS, Kozelj M, Orel B, Kovac J (2008) A structural and corrosion study of triethoxysilyl functionalized POSS coatings on AA 2024 alloy. Langmuir 24:5029–5037

    Article  CAS  Google Scholar 

  38. Ro HW, Park ES, Soles CL, Yoon DY (2010) Structure–property relationships for methylsilsesquioxanes. Chem Mater 22:1330–1339

    Article  CAS  Google Scholar 

  39. Sheen Y-C, Lu C-H, Huang C-F, Kuo S-W, Chang F-C (2008) Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites. Polymer 49:4017–4024

    Article  CAS  Google Scholar 

  40. Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109

    Article  CAS  Google Scholar 

  41. Liu C, Liu Y, Shen Z, Xie P, Dai D, Zhang R, He CB, Chung T (2001) Synthesis and characterization of novel alcohol-soluble ladderlike poly(silsesquioxane)s containing side-chain hydroxy groups. Macromol Chem Phys 202:1576–1580

    Article  CAS  Google Scholar 

  42. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater 8:1250–1259

    Article  CAS  Google Scholar 

  43. Su K, Bujalski DR, Eguchi K, Gordon GV, Ou D-L, Chevalier P, Hu SL, Boisvert RP (2005) Low-k interlayer dielectric materials: synthesis and properties of alkoxy-functional silsesquioxanes. Chem Mater 17:2520–2529

    Article  CAS  Google Scholar 

  44. Fasce DP, dell’Erba IE, Williams DJ (2005) Synthesis of a soluble functionalized-silica by the hydrolysis and condensation of organotrialkoxysilanes bearing (β-hydroxy) tertiary amine groups with tetraethoxysilane. Polymer 46:6649–6656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Saneyoshi scholarship foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Mori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, H., Yamada, M. Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate. Colloid Polym Sci 290, 1879–1891 (2012). https://doi.org/10.1007/s00396-012-2726-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2726-7

Keywords

Navigation