Skip to main content
Log in

Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Synthesis of chlorine-free, rare earth oxide aerogels from the lanthanide series was achieved using a modified epoxide-assisted sol-gel method. An ethanolic solution of the hydrated metal nitrate, propylene oxide, and ammonium carbonate was found to gel upon heating to 333 K. Critical point drying of the wet gel in CO2 yielded monolithic aerogels. Most of the aerogels were amorphous as-prepared, but became nano-crystalline after calcination at 923 K in air. The aerogels had high surface areas (up to 150 m2/g), low densities (40–225 mg/cm3), and were photoluminescent.

Highlights

  • Rare earth oxide aerogels were prepared by epoxide-assisted sol-gel route.

  • Rare earth oxide aerogels are monolithic, chlorine-free, and possess large surface areas.

  • Calcination at 923 K results in nano-crystalline aerogels, with particles less than 25 nm in diameter.

  • Characterization of these aerogels includes photoluminescence spectroscopy, Rietveld refinements, and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113:4391

    Google Scholar 

  2. Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J Mater Sci 34:5273

    Google Scholar 

  3. Sauer J, Marlow F, Spliethoff B, Schüth F (2002) Rare earth oxide coating of the walls of SBA-15. Chem Mater 14:217

    Google Scholar 

  4. Skårman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal 211:119

    Google Scholar 

  5. Van der Avert P, Weckhuysen BM (2002) Low-temperature destruction of chlorinated hydrocarbons over lanthanide oxide based catalysts Angew Chem Int Ed 41:4730

    Google Scholar 

  6. Borchert Y, Sonström P, Wilhelm M, Borchert H, Bäumer M (2008) Nanostructured praseodymium oxide: preparation, structure, and catalytic properties. J Phys Chem C 112:3054

    Google Scholar 

  7. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park S-E (2009) Structural characteristics and catalytic activity of nanocrystalline ceria–praseodymia solid solutions. J Phys Chem C 113:15882

    Google Scholar 

  8. Zhang HD, Li B, Zheng QX, Jiang MH, Tao XT (2008) Synthesis and characterization of monolithic Gd2O3 aerogels. J Non-Cryst Solids 354:4089

    Google Scholar 

  9. Zhang Y, Lei Z, Li J, Lu S (2001) A new route to three-dimensionally well-ordered macroporous rare-earth oxides. New J Chem 25:1118

    Google Scholar 

  10. Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) Synthesis of lanthanide and lanthanide-silicate aerogels. J Sol-Gel Sci Technol 1:241

    Google Scholar 

  11. Clapsaddle BJ, Neumann B, Wittstock A, Sprehn DW, Gash A, Satcher JH, Simpson RL, B„umer M (2012) A sol-gel methodology for the preparation of lanthanide-oxide aerogels: preparation and characterization. J Sol-Gel Sci Technol 64:381

    Google Scholar 

  12. Hutchings GJ, King F, Okoye IP, Rochester CH (1994) Influence of chlorine poisoning of copper/alumina catalyst on the selective hydrogenation of crotonaldehyde. Catal Lett 23:127

    Google Scholar 

  13. Heldal JA, Mørk PC (1982) Chlorine-containing compounds as copper catalyst poisons. J Am Oil Chem Soc 59:396

    Google Scholar 

  14. Shin E-J, Spiller A, Tavoularis G, Keane MA (1999) Chlorine–nickel interactions in gas phase catalytic hydrodechlorination: catalyst deactivation and the nature of reactive hydrogen. Phys Chem Chem Phys 1:3173

    Google Scholar 

  15. Gregg SJ, Sing KSW (1982) Adsorption, surface area, and porosity. 2nd edn. Academic, London

    Google Scholar 

  16. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999

    Google Scholar 

  17. Gash AE, Satcher JH, Simpson RL (2003) Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization. Chem Mater 15:3268

    Google Scholar 

  18. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395

    Google Scholar 

  19. Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285:57

    Google Scholar 

  20. Teck M, Murshed MM, Schowalter M, Lefeld N, Grossmann HK, Grieb T, Hartmann T, Robben L, Rosenauer A, Mädler L, Gesing TM (2017) Structural and spectroscopic comparison between polycrystalline, nanocrystalline and quantum dot visible light photo-catalyst Bi2WO6. J Solid State Chem 254:82

    Google Scholar 

  21. Aldebert P, Traverse JP (1979) Etude par diffraction neutronique des structures de haute temperature de La2O3 et Nd2O3. Mater Res Bull 14:303

    Google Scholar 

  22. Andreeva AF, Gil’man IY, Gamarnik MY, Dekhtyaruk VI (1986) Structure and some optical properties of films of Pr6O11. Inorg Mater 22:1155

    Google Scholar 

  23. Antic B, Mitric M, Rodic D (1995) Structure properties and magnetic susceptibility of diluted magnetic semiconductor Y2−xHoxO3. J Magn Magn Mater 145:349

    Google Scholar 

  24. Antic B, Oennerud P, Rodic D, Tellgren R (1993) The structure characteristics of the diluted magnetic semiconductor Y2−xDyxO3. Powder Diffr 8:216

    Google Scholar 

  25. Artini C, Pani M, Plaisier JR, Costa GA (2014) Structural study of Nd oxidation by means of in-situ synchrotron X-ray diffraction. Solid State Ion 257:38

    Google Scholar 

  26. Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syono Y (1990) Shock-induced phase transition of M2O3-type compounds. J Solid State Chem 89:378

    Google Scholar 

  27. Atou T, Kusaba K, Tsuchida Y, Utsumi W, Yagi T, Syono Y (1989) Reversible B-type–A-type transition of Sm2O3 under high pressure. Mater Res Bull 24:1171

    Google Scholar 

  28. Bartos A, Lieb KP, Uhrmacher M, Wiarda D (1993) Refinement of atomic positions in bixbyite oxides using perturbed angular correlation spectroscopy. Acta Crystallogr B 49:165

    Google Scholar 

  29. Ben Farhat L, Amami M, Hlil EK, Ben Hassen R (2009) Structural and vibrational study of C-type doped rare earth sesquioxide. J Alloy Compd 479:594

    Google Scholar 

  30. Ben Farhat L, Amami M, Hlil EK, Ben Hassen R (2010) Synthesis, structure and magnetic properties of the mixed system. Mater Chem Phys 123:737

    Google Scholar 

  31. Bevan DJM (1955) Ordered intermediate phases in the system CeO2–Ce2O3. J Inorg Nucl Chem 1:49

    Google Scholar 

  32. Bischof R, Kaldis E, Lacis I (1983) Crystal growth os ytterbium dihydride and the phase relations in the Yb–H system. J Less-Common Met 94:117

    Google Scholar 

  33. Blanusa J, Mitric M, Felner I, Jovic N, Bradaric I (2003) The crystal structure refinement and magnetic susceptibility of La2−xErxO3. J Magn Magn Mater 263:295

    Google Scholar 

  34. Blanusa J, Mitric M, Rodic D, Szytula A, Slaski M (2000) An X-ray diffraction and magnetic susceptibility study of TmxY2−xO3. J Magn Magn Mater 213:75

    Google Scholar 

  35. Bommer H (1939) Die Gitterkonstanten der C-Formen der Oxyde der seltenen Erdmetalle. Z Anorg Allg Chem 241:273

    Google Scholar 

  36. Boucherle JX, Schweizer J (1975) Refinement of the Nd2O3 structure and determination of the neutron scattering length of neodymium. Acta Crystallogr B 31:2745

    Google Scholar 

  37. Boulesteix C, Pardo B, Caro PE, Gasgnier M, la Blanchetais CH (1971) Etude de couches minces de sesquioxyde de samarium type par microscopie et diffraction electroniques. Acta Crystallogr B 27:216

    Google Scholar 

  38. Chandrasekhar M, Nagabhushana H, Sudheerkumar KH, Dhananjaya N, Sharma SC, Kavyashree D, Shivakumara C, Nagabhushana BM (2014) Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater Res Bull 55:237

    Google Scholar 

  39. Chandrasekhar M, Sunitha DV, Dhananjaya N, Nagabhushana H, Sharma SC, Nagabushana BM, Shivakumara C, Chakradhar RPS (2012) Structural and phase dependent thermo and photoluminiscent properties of Dy3 and DyO3 nanorods. Mater Res Bull 47:2085

    Google Scholar 

  40. Chen G, Peterson JR, Brister KE (1994) An energy-dispersive X-ray diffraction study of monoclinic Eu2O3 under pressure. J Solid State Chem 111:437

    Google Scholar 

  41. Chikalla TD, McNeilly CE, Roberts FP (1972) Polymorphic modifications of Pm2O3. J Am Ceram Soc 55:428

    Google Scholar 

  42. Cromer DT (1957) The crystal structure of monoclinic Sm2O3. J Phys Chem 61:753

    Google Scholar 

  43. Cunningham GW (1963) Nuclear poisons. React Mater 6:63

    Google Scholar 

  44. Dordevic V, Antic Z, Nikolic MG, Dramicanin MD (2014) Comparative structural and photoluminescent study of Eu-doped La2O3 and La3 nanocrystalline powders. J Phys Chem Solids 75:276

    Google Scholar 

  45. Faucher M, Pannetier J, Charreire Y, Caro P (1982) Refinement of the Nd2O3 and Nd2O2S structures at 4 K. Acta Crystallogr B 38:344

    Google Scholar 

  46. Felsche J (1969) A new form of La2O3. Naturwissenschaften 56:212

    Google Scholar 

  47. Ferguson IF (1975) Lattice parameters of oxides and mixed oxides with the monoclinic rare earth type B structure. Acta Crystallogr A 31:S69

    Google Scholar 

  48. Fert A (1962) Structure de quelques oxydes de terres rares. Bull Fr Soc Mineral Cristallogr 85:267

    Google Scholar 

  49. Gasgnier M, Schiffmacher G, Caro P, Eyring L (1986) The formation of rare earth oxides far from equilibrium. J Less-Common Met 116:31

    Google Scholar 

  50. Gouteron J, Michel D, Lejus AM, Zarembowitch J (1981) Raman spectra of lanthanide sesquioxide single crystals: correlation between A and B-type structures. J Solid State Chem 38:288

    Google Scholar 

  51. Greis O, Ziel R, Breidenstein B, Haase A, Petzel T (1994) The crystal structure of the low-temperature A-type modification of Pr2O3 from X-ray powder and electron single crystal diffraction. J Alloy Compd 216:255

    Google Scholar 

  52. Gupta ML, Singh S (1970) Thermal expansion of CeO2, Ho2O3, and Lu2O3 from 100 Å to 300 Å K by an X-ray method. J Am Ceram Soc 53:663

    Google Scholar 

  53. Guzik M, Pejchal J, Yoshikawa A, Ito A, Goto T, Siczek M, Lis T, Boulon G (2014) Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic. Cryst Growth Des 14:3327

    Google Scholar 

  54. Hase W (1963) Neutronographische Bestimmung der Kristallstrukturparameter von Dy2O3, Tm2O3 und alpha-Mn2O3. Phys Status Solidi 3:446

    Google Scholar 

  55. Heiba Z, Okuyucu H, Hascicek YS (2002) X-ray structure determination of the rare earth oxides (Er1−uGdu)2O3 applying the Rietveld method. J Appl Crystallogr 35:577

    Google Scholar 

  56. Heiba ZK, Akin Y, Sigmund W, Hascicek YS (2003) X-ray structure and microstructure determination of the mixed sesquioxides (Eu1−xYbx)2O3 prepared by a sol-gel process. J Appl Crystallogr 36:1411

    Google Scholar 

  57. Heiba ZK, Arda L (2008) X-ray diffraction analysis of powder and thin film of (Gd1−xYx)2O3 prepared by sol-gel process. Cryst Res Technol 43:282

    Google Scholar 

  58. Heiba ZK, Arda L, Hascicek YS (2005) Structure and microstructure characterization of the mixed sesquioxides (Gd1−xYbx)2O3 and (Gd1−xHox)2O3 prepared by sol-gel process. J Appl Crystallogr 38:306

    Google Scholar 

  59. Heiba ZK, Bakr Mohamed M, Fuess H (2012) XRD, IR and Raman investigations of structural properties of Dy2−xHoxO3 prepared by sol gel procedure. Cryst Res Technol 47:535

    Google Scholar 

  60. Hering SA, Huppertz H (2009) High-pressure synthesis and crystal structures of monoclinic B-Ho2O3 and orthorhombic HoGaO3. Z Naturforsch B: Chem Sci 64:1032

    Google Scholar 

  61. Hubbert-Paletta E, Müller-Buschbaum H (1968) Roentgenographische Untersuchung an Einkristallen von monoklinem Tb2O3. Z Anorg Allg Chem 363:145

    Google Scholar 

  62. Ishibashi H, Shimomoto K, Nakahigashi K (1994) Electron density distribution and chemical bonding of Ln2O3 from powder x-ray diffraction data by the maximum-entropy method. J Phys Chem Solids 55:809

    Google Scholar 

  63. Kashaev AA, Ushchapovskii LV, Il’in AG (1975) Electron diffraction and X-ray diffraction study of rare earth metal oxides in thin films. Kristallografiya 20:192

    Google Scholar 

  64. Katari V, Achary SN, Deshpande SK, Babu PD, Sinha AK, Salunke HG, Gupta N, Tyagi AK (2014) Effect of annealing environment on low-temperature magnetic and dielectric properties of EuCo0.5Mn0.5O3. J Phys Chem C 118:17900

    Google Scholar 

  65. Kennedy BJ, Avdeev M (2011) The structure of C-type Gd2O3. A powder neutron diffraction study using enriched Gd Aust J Chem 64:119

    Google Scholar 

  66. Kennedy BJ, Avdeev M (2011) The structure of B-type Sm2O3. A powder neutron diffraction study using enriched 154Sm. Solid State Sci 13:1701

    Google Scholar 

  67. Koehler WC, Wollan EO (1953) Neutron-diffraction study of the structure of the A-form of the rare earth sesquioxides. Acta Crystallogr 6:741

    Google Scholar 

  68. Koehler WC, Wollan EO, Wilkinson MK (1958) Paramagnetic and nuclear scattering cross sections of holmium sesquioxyde. Phys Rev 110:37

    Google Scholar 

  69. Kohlmann H, Hein C, Kautenburger R, Hansen TC, Ritter C, Doyle S (2016) Crystal structure of monoclinic samarium and cubic europium sesquioxides and bound coherent neutron scattering lengths of the isotopes 154Sm and 153Eu. Z Kristal Cryst Mater 231:517

    Google Scholar 

  70. Whiffen RK, Antic Z, Speghini A, Brik MG, Bartova B, Bettinelli M, Dramicanin MD (2014) Structural and spectroscopic studies of Eu doped Lu2O3–Gd2O3 solid solutions. Opt Mater 36:1083

    Google Scholar 

  71. Lejus AM, Bernier JC, Collongues R (1976) Elaboration et proprietes magnetiques de monocristaux d’oxyde de praseodyme Pr2O3. J Solid State Chem 16:349

    Google Scholar 

  72. Malinovskii YA, Bondareva OS (1991) Refined crystal structure of Er2O3. Kristallografiya 36:1558

    Google Scholar 

  73. Maslen EN, Strel’tsov VA, Ishizawa N (1996) A synchrotron X-ray study of the electron density in C-type rare earth oxides. Acta Crystallogr B 52:414

    Google Scholar 

  74. McCarthy GJ (1971) Approximations in refinement of elastic constant values from thermal diffuse scattering measurements. J Appl Crystallogr 4:399

    Google Scholar 

  75. Mitric M, Blanusa J, Barudzija T, Jaglicic Z, Kusigerski V, Spasojevic V (2009) Magnetic properties of trivalent Sm ions in SmxY2−xO3. J Alloy Compd 485:473

    Google Scholar 

  76. Moon RM, Koehler WC, Child HR, Raubenheimer LJ (1968) Magnetic structures of Er2O3 and Yb2O3. Phys Rev 176:722

    Google Scholar 

  77. Müller-Buschbaum H (1966) Zur Struktur der A-Form der Sesquioxide der Seltenen Erden. II Strukturuntersuchung an Nd2O3. Z Anorg Allg Chem 343:6

    Google Scholar 

  78. Müller-Buschbaum H, von Schnering HG (1965) Strukturuntersuchungen an La2O3. Z Anorg Allg Chem 340:232

    Google Scholar 

  79. Pauling L (1928) The crystal structure of the A-modification of the rare earths sesquioxides. Z Kristallogr Kristallogeom Kristallophys Kristallochem 69:415

    Google Scholar 

  80. Pedroso CCS, Carvalho JM, Rodrigues LCV, Holsa J, Brito HF (2016) Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+-doped Lu2O3 persistent luminescence materials. ACS Appl Mater Interfaces 8:19593

    Google Scholar 

  81. Pires AM, Davolos MR, Paiva-Santos CO, Berwerth Stucchi E, Flor J (2003) New X-ray powder diffraction data and Rietveld refinement for Gd2O3 monodispersed fine spherical particles. J Solid State Chem 171:420

    Google Scholar 

  82. Post B, Moskowitz D, Glaser FW (1956) Borides of rare earth and related metals. Planseeber Pulvermetall 1955:173

    Google Scholar 

  83. Rudenko VS, Boganov AG (1970) Reduction cycle MO2–M2O3 for cerium, praseodymium, and terbium oxides. Inorg Mater 6:1893

    Google Scholar 

  84. Rudenko VS, Boganov AG (1970) Stoichiometry and phase transitions in rare earth oxides. Inorg Mater 6:1893

    Google Scholar 

  85. Rudenko VS, Boganov AG (1973) The observation of face centred cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation. J Phys F 3:1

    Google Scholar 

  86. Saiki A, Ishizawa N, Mizutani N, Kato M (1985) Structural change of C-rare Earth sesquioxides Yb2O3 and Er2O3 as a function of temperature. Yogyo Kyokai Shi 93:649

    Google Scholar 

  87. Scavini M, Coduri M, Allieta M, Brunelli M, Ferrero C (2012) Probing complex disorder in Ce1−xGdxO2−x/2 using the pair distribution function analysis. Chem Mater 24:1338

    Google Scholar 

  88. Schiller G (1985) Die Kristallstrukturen von Ce2O3, LiCeO2 und CeF3—Ein Beitrag zur Kristallchemie des dreiwertigen Cers. Dissertation Universitaet Karlsruhe 1985:1

    Google Scholar 

  89. Schleid T, Meyer G (1989) Single crystals of rare earth oxides from reducing halide melts. J Less-Common Met 149:73

    Google Scholar 

  90. Sheu HS, Shih WJ, Chuang WT, Li IF, Yeh CS (2010) Crystal structure and phase transition of GdOH studied by synchrotron powder diffraction. J Chin Chem Soc 57:938

    Google Scholar 

  91. Singh HP, Dayal B (1969) Precise determination of the lattice parameters of holmium and erbium sesquioxides at elevated temperatures. J Less-Common Met 18:172

    Google Scholar 

  92. Taylor D (1984) Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C - M2O3 structures. Trans J Br Ceram Soc 83:92

    Google Scholar 

  93. Turcotte RP, Warmkessel JM, Tilley RJD, Eyring L (1971) On the phase interval PrO1.50 to PrO1.71 in the praseodymium oxide–oxygen system. J Solid State Chem 3:265

    Google Scholar 

  94. Umesh B, Eraiah B, Nagabhushana H, Nagabhushana BM, Nagaraja G, Shivakumara C, Chakradhar RPS (2011) Synthesis and characterization of spherical and rod like nanocrystalline Nd2O3 phosphors. J Alloy Compd 509:11436

    Google Scholar 

  95. Vasundhara K, Achary SN, Patwe SJ, Sahu AK, Manoj N, Tyagi AK (2014) Structural and oxide ion conductivity studies on Yb1−xBixO1.5 composites. J Alloy Compd 596:151

    Google Scholar 

  96. Vucinic-Vasic M, Kremenovic A, Nikolic AS, Colomban P, Mazzerolles L, Kahlenberg V, Antic B (2010) Core and shell structure of ytterbium sesquioxide nanoparticles. J Alloy Compd 502:107

    Google Scholar 

  97. Will G, Masciocchi N, Hart M, Parrish W (1987) Ytterbium L-edge anomalous scattering measured with synchrotron radiation powder diffraction. Acta Crystallogr Sect A: Found Crystallogr 43:677

    Google Scholar 

  98. Wolf R, Hoppe R (1985) Eine Notiz zum A-Typ der Lanthanoidoxide: Ueber Pr2O3. Z Anorg Allg Chem 529:61

    Google Scholar 

  99. Wontcheu J, Schleid T (2008) Single crystals of B-type Er2O3. Z Anorg Allg Chem 634:2091

    Google Scholar 

  100. Yakel HL (1979) A refinement of the crystal structure of monoclinic europium sesquioxide. Acta Crystallogr B 35:564

    Google Scholar 

  101. Zachariasen WH (1926) Die Kristallstruktur der alpha-Modifikation von den Sesquioxiden der seltenen Erdmetalle. Z Phys Chem 123:134

    Google Scholar 

  102. Zachariasen WH (1927) The crystal structure of the modification C of the sesquioxides of the rare earth metals, and of indium and thallium. Nor Geol Tidsskr 9:310

    Google Scholar 

  103. Zachariasen WH (1928) Untersuchungen ueber die Kristallstruktur von Sesquioxyden und Verbindungen ABO3. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo. 1, Matematisk-Naturvidenskapelig Klasse 1928:1

    Google Scholar 

  104. Zav’yalova AA, Imamov RM, Ragimli NA, Semiletov SA (1976) Electron-diffraction study of the structure of cubic C-Sm2O3. Kristallografiya 21:727

    Google Scholar 

  105. Zhang FX, Lang M, Wang JW, Becker U, Ewing RC (2008) Structural phase transition of cubic Gd2O3 at high pressures. Phys Rev Ser 3 B Condens Matter 78:064114

    Google Scholar 

  106. Molina C, Ferreira RAS, Poirier G, Fu L, Ribeiro SJL, Messsaddeq Y, Carlos LD (2008) Er3+-based diureasil organic–inorganic hybrids. J Phys Chem C 112:19346

    Google Scholar 

  107. Planelles-Arago J, Cordoncillo E, Ferreira RAS, Carlos LD, Escribano P (2011) Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS [rightward arrow] lanthanide energy transfer mechanisms. J Mater Chem 21:1162

    Google Scholar 

  108. Miguel A, Azkargorta J, Morea R, Iparraguirre I, Gonzalo J, Fernandez J, Balda R (2013) Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass. Opt Express 21:9298

    Google Scholar 

Download references

Acknowledgements

We like to thank the German Science Foundation (DFG) for financial support in the scientific large instrument program under the project number INST144/435-1FUGG. JI and MB gratefully acknowledge funding by the DFG through the graduate school 1860 “Micro-, meso- and macroporous nonmetallic Materials: Fundamentals and Applications”. This work is partially developed in the scope of the projects CICECO—Aveiro Institute of Materials (UID/CTM/50011/2013) financed by national funds through the Fundação para a Ciência e a Tecnologia/Ministério da Educação e Ciência (FCT/MEC) and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. We acknowledge the Fraunhofer Institute for Manufacturing Technology and Advanced Materials (Bremen, Germany) for the provision of access to their TEM facility and Karsten Thiel for assistance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, through LDRD awards 13-LW-099 and 16-ERD-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Worsley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worsley, M.A., Ilsemann, J., Gesing, T.M. et al. Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method. J Sol-Gel Sci Technol 89, 176–188 (2019). https://doi.org/10.1007/s10971-018-4811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4811-y

Keywords

Navigation