Skip to main content
Log in

First rare-earth phosphate aerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate aerogel

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Since the late 1960s, ceric hydrogen phosphates have attracted the attention of scientists due to remarkable ion exchange, sorption, proton-conduction and catalytic properties. In this work, through the application of various solvents, we, for the first time, have obtained monolithic aerogels based on ceric hydrogen phosphates with high porosity (~99%) and extremely low density (~10 μg/cm3). The composition and structure of aerogels were thoroughly studied with XRD, TEM, SEM, XPS, low temperature nitrogen adsorption methods, TGA/DSC, Fourier-transform infrared spectroscopy (FTIR) and small-angle neutron scattering (SANS). The aerogels were found to belong to the fibrous macroporous aerogels family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McNaught AD, Wilkinson A (eds) (1997) Compendium of chemical terminology, 2nd edn. (the “Gold Book”). Blackwell Scientific Publications, Oxford

  2. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266

    Article  Google Scholar 

  3. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater 17:395–401

    Article  Google Scholar 

  4. Gash AE, Satcher JH, Simpson RL (2003) Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization. Chem Mater 15:3268–3275

    Article  Google Scholar 

  5. Baumann TF, Kucheyev SO, Gash AE, Satcher JH (2005) Facile synthesis of a crystalline, high‐surface‐area SnO2 aerogel. Adv Mater 17:1546–1548

    Article  Google Scholar 

  6. Gash AE, Satcher JH, Simpson RL (2004) Monolithic nickel (II)-based aerogels using an organic epoxide: the importance of the counterion. J Non-Cryst Solids 350:145–151

    Article  Google Scholar 

  7. Lermontov SA, Straumal EA, Mazilkin AA, Zverkova II, Baranchikov AE, Straumal BB, Ivanov VK (2016) How to tune the alumina aerogels structure by the variation of a supercritical solvent. Evolution of the structure during heat treatment. J Phys Chem C 120:3319–3325

    Article  Google Scholar 

  8. Ganguly S, Zhou C, Morelli D, Sakamoto J, Brock SL (2012) Synthesis and characterization of telluride aerogels: effect of gelation on thermoelectric performance of Bi2Te3 and Bi2–xSbxTe3 nanostructures. J Phys Chem C 116:17431–17439

    Article  Google Scholar 

  9. Ghosal S, Hemminger JC, Bluhm H, Mun BS, Hebenstreit ELD, Ketteler G, Ogletree DF, Requejo FG, Salmeron M (2005) Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307:563–566

    Article  Google Scholar 

  10. Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317:490–493

    Article  Google Scholar 

  11. Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C (2010) Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem Mater 22:2790–2803

    Article  Google Scholar 

  12. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 42:169–175

    Article  Google Scholar 

  13. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069

    Article  Google Scholar 

  14. Worsley MA, Satcher JH, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766

    Article  Google Scholar 

  15. Marco MD, Markoulidis F, Menzel R, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer MSP (2016) Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry. J Mater Chem A 4:5385–5389

    Article  Google Scholar 

  16. Dong L, Yang Q, Xu C, Li Y, Yang D, Hou F, Yin H, Kang F (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171

    Article  Google Scholar 

  17. Jones SM (2007) A method for producing gradient density aerogel. J Sol-Gel Sci Technol 44:255–258

    Article  Google Scholar 

  18. Schaefer DW, Keefer KD (1986) Structure of random porous materials: silica aerogel. Phys Rev Lett 56:2199–2202

    Article  Google Scholar 

  19. Liang L, Xu Y, Lei Y, Liu. H (2014) 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties. Nanoscale 6:3536–3539

    Article  Google Scholar 

  20. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664

    Article  Google Scholar 

  21. Hao P, Tian J, Sang Y, Tuan C-C, Cui G, Shi X, Wong CP, Tang B, Liu H (2016) 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycle stability. Nanoscale 8:16292–16301

    Article  Google Scholar 

  22. Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, Monte F (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42:794–830

    Article  Google Scholar 

  23. Zhu Y, Shimizu T, Kitajima T, Morisato K, Moitra N, Brun N, Kiyomura T, Kanamori K, Takeda K, Kurata H, Tafu M, Nakanishi K (2015) Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J Chem 39:2444–2450

    Article  Google Scholar 

  24. PA Iacobucci (1986). Inorganic phosphate aerogels and their preparation. U.S. Patent No. 4,622,310. U.S. Patent and Trademark Office, Washington, DC

  25. Boyse RA, Ko EI (1996) Preparation and characterization of zirconia-phosphate aerogels. Catal Lett 38:225–230

    Article  Google Scholar 

  26. Waghray A, Ko EI (1996) One-step synthesis and characterization of niobia-phosphate aerogels. Catal Today 28:41–47

    Article  Google Scholar 

  27. Lee SL, Nur H, Hamdan H (2009) Physical properties and bifunctional catalytic performance of phosphate–vanadium impregnated silica–titania aerogel. Catal Lett 132:28–33

    Article  Google Scholar 

  28. Sydorchuk V, Zazhigalov V, Khalameida S, Diyuk E, Skubiszewska-Zięba J, Leboda R, Kuznetsova L (2010) Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures. Mater Res Bull 45:1096–1105

    Article  Google Scholar 

  29. Metwally SS, El-Gammal B, Aly HF, Abo-El-Enein SA (2011) Removal and separation of some radionuclides by poly-acrylamide based Ce(IV) phosphate from radioactive waste solutions. Sep Sci Technol 46:1808–1821

    Article  Google Scholar 

  30. Larsen EM, Cilley WA (1968) The exchange of Li+, Na+ and K+ on cerium (IV) phosphate. J Inorg Nucl Chem 30:287–293

    Article  Google Scholar 

  31. Barboux P, Morineau R, Livage J (1988) Protonic conductivity in hydrates. Solid State Ion 27:221–225

    Article  Google Scholar 

  32. Rocha GMSRO, Johnstone RAW, Neves MGPMS (2002) Catalytic effects of metal (IV) phosphates on the oxidation of phenol and 2-naphthol. J Mol Catal A 187:95–104

    Article  Google Scholar 

  33. Yan C-H, Yan Z-G, Du Y-P, Shen J, Chang C, Feng W (2011) Controlled synthesis and properties of rare earth nanomaterials. Handb Phys Chem Rare Earths 41:275–472

    Article  Google Scholar 

  34. Achary SN, Bevara S, Tyagi AK (2017) Recent progress on synthesis and structural aspects of rare-earth phosphates. Coordin Chem Rev 40:266–297

    Article  Google Scholar 

  35. Clavier N, Podor R, Dacheux N (2011) Crystal chemistry of the monazite structure. J Eur Ceram Soc 31:941–976

    Article  Google Scholar 

  36. Nazaraly M, Wallez G, Chaneac C, Tronc E, Ribot F, Quarton M, Jolivet J-P (2005) The first structure of a cerium (IV) phosphate: ab initio Rietveld analysis of CeIV(PO4)(HPO4)0.5(H2O)0.5. Angew Chem Int Ed 44:5691–5694

    Article  Google Scholar 

  37. Nazaraly M, Chaneac C, Ribot F, Wallez G, Quarton M, Jolivet J-P (2007) A new story in the structural chemistry of cerium (IV) phosphate. J Phys Chem Solids 68:795–798

    Article  Google Scholar 

  38. Nazaraly M, Quarton M, Wallez G, Chaneac C, Ribot F, Jolivet J-P (2007) Ce(H2O)(PO4)3/2(H3O)1/2(H2O)1/2, a second entry in the structural chemistry of cerium (IV) phosphate. Solid State Sci 9:672–677

    Article  Google Scholar 

  39. Hartley WN (1882) Contributions to the chemistry of cerium compounds. J Chem Soc 41:202–209

    Article  Google Scholar 

  40. Shekunova TO, Baranchikov AE, Ivanova OS, Skogareva LS, Simonenko NP, Karavanova YuA, Lebedev VA, Borilo LP, Ivanov VK (2016) Cerous phosphate gels: synthesis, thermal decomposition and hydrothermal crystallization paths. J Non-Cryst Solids 447:183–189

    Article  Google Scholar 

  41. Ivanov VK, Baranchikov AE, Polezhaeva OS, Kopitsa GP, Tret’yakov YuD (2010) Oxygen nonstoichiometry of nanocrystalline ceria. Russ J Inorg Chem 55:325–327

    Article  Google Scholar 

  42. Yorov KhE, Sipyagina NA, Malkova AN, Baranchikov AE, Lermontov SA, Borilo LP, Ivanov VK (2016) Methyl tert-butyl ether as a new solvent for the preparation of SiO2–TiO2 binary aerogels. Inorg Mater 52:163–169

    Article  Google Scholar 

  43. Keiderling U (2002) The new ‘BerSANS-PC’ software for reduction and treatment of small angle neutron scattering data. Appl Phys A 74:1455–1457

    Article  Google Scholar 

  44. Daniel C, Longo S, Ricciardi R, Reverchon E, Guerra G (2013) Monolithic nanoporous crystalline aerogel. Macromol Rapid Commun 34:1194–1207

    Article  Google Scholar 

  45. Hayashi H, Ebina T, Onodera Y, Iwasaki T (1997) Strontium immobilization by fibrous cerium(IV) bis(monohydrogenphosphate) under hydrothermal conditions. Bull Chem Soc Jpn 70:1701–1708

    Article  Google Scholar 

  46. Hayashi H, Torii K, Nakata S (1997) Hydrothermal treatment and strontium ion sorption properties of fibrous cerium (IV) hydrogenphosphate. J Mater Chem 7:557–562

    Article  Google Scholar 

  47. Chen KF, Kao CM, Wu LC, Surampalli RY, Liang SH (2009) Methyl tert-butyl ether (mtbe) degradation by ferrous ion-activated persulfate oxidation: feasibility and kinetics studies. Water Environ Res 81:687–694

    Article  Google Scholar 

  48. Hirai H, Masui T, Imanaka N, Adachi G (2004) Characterization and thermal behavior of amorphous rare earth phosphates. J Alloy Compd 374:84–88

    Article  Google Scholar 

  49. Masui T, Hirai H, Imanaka N, Adachi G (2003) Characterization and thermal behavior of amorphous cerium phosphate. Phys Stat Sol A 198:364–368

    Article  Google Scholar 

  50. Nazaraly M, Wallez G, Chane C, Tronc E, Ribot F, Quarton M, Jolivet J-P (2006) Synthesis and characterization of CeIV(PO4)(HPO4)0.5(H2O)0.5. J Phys Chem Solids 67:1075–1078

    Article  Google Scholar 

  51. Brandel V, Clavier N, Dacheux N (2005) Synthesis and characterization of uranium (IV) phosphate-hydrogenphosphate hydrate and cerium (IV) phosphate-hydrogenphosphate hydrate. J Solid State Chem 178:1054–1063

    Article  Google Scholar 

  52. Herman RG, Clearfield A (1975) Crystalline cerium (IV) phosphates – I. Preparation and characterization of crystalline compounds. J Inorg Nucl Chem 37:1697–1704

    Article  Google Scholar 

  53. Socrates G (2004). Infrared and Raman characteristic group frequencies: Tables and Charts. J. Willey & Sons, Chichester, U.K. p 366

  54. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  Google Scholar 

  55. Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80:61–164

    Article  Google Scholar 

  56. Lee S, Fischer TB, Stokes MR, Klingler RJ, Ilavsky J, McCarty DK, Wigand MO, Derkowski A, Winans RE (2014) Dehydration effect on the pore size, porosity, and fractal parameters of Shale rocks: ultrasmall-angle X-ray scattering study. Energy Fuels 28:6772–6779

    Article  Google Scholar 

  57. Beaucage G, Schaefer DW (1994) Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach. J Non-Cryst Solids 172:797–805

    Article  Google Scholar 

  58. Guinier A (1939) A diffraction des rayons X aux très petits angles: application à l'étude de phénomènes ultramicroscopiques. Ann Phys 12:161–237

    Article  Google Scholar 

  59. Jung SM, Mafra DL, Lin C-T, Jung HY, Kong J (2015) Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. Nanoscale 7:4386–4393

    Article  Google Scholar 

  60. Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355

    Article  Google Scholar 

  61. Khodan AN, Kopitsa GP, Yorov Kh.E, Baranchikov AE, Ivanov VK, Feoktystov A, Pipich V (2018) Structure of aluminium oxohydroxide aerogels: small angle scattering studies. J Surf Invest 11(2) (in press)

  62. Jung SM, Jung HY, Dresselhaus MS, Jung YJ, Kong J (2012) A facile route for 3D aerogels from nanostructured 1D and 2D materials. Sci Rep 2:849

    Article  Google Scholar 

  63. Livage J (1991) Vanadium pentoxide gels. Chem Mater 3:578–593

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. O.V. Boytsova and Dr. N.P. Simonenko for their kind assistance. The effect of the supercritical fluid on the aerogels’ structure and composition was conducted with the support of the Russian Science Foundation (14-13-01150). This research was performed using the equipment of the JRC PMR IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. Е. Baranchikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorov, K.E., Shekunova, T.О., Baranchikov, А.Е. et al. First rare-earth phosphate aerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate aerogel. J Sol-Gel Sci Technol 85, 574–584 (2018). https://doi.org/10.1007/s10971-018-4584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4584-3

Keywords

Navigation