Skip to main content

Advertisement

Log in

Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrothermal method was adapted to synthesis NiCo2O4 nanoparticles by varying nickel and cobalt precursor concentration as 1:1, 1:2, and 1:3 ratios. X-ray diffraction (XRD) results revealed the spinel NiCo2O4 structure belongs to \({\rm{Fd}}\overline {\rm{3}} {\rm{m}}\) space group system with face-centered cubic crystal structure. Raman characteristic peaks observed at 495 and 654 cm−1 explored Eg and A2g modes of spinel NiCo2O4 product. Photoluminescence (PL) results revealed the hole recombination of Ni2+/Co2+ ions from 3d-Eg and 3d-Tg electronic state of spinel NiCo2O4 material. The characteristic Fourier transform infrared spectroscopy (FTIR) metal–oxygen bands appeared at 658 and 558 cm−1 revealed the spinel-type crystal structure. SEM image revealed the NiCo2O4 spherical nanoparticles formation with an average particle size of around 500 nm. The cyclic voltammetry studies revealed the estimated average specific capacitance value of NC3 (NiCo2O4 spherical nanoparticles) as 542 F g−1 relatively higher than NC1 and NC2. The electro impendence spectroscopy results explored the small arc formation in high frequency range and very low charge transfer resistance (R ct), which resulted high conductive active materials. The estimated specific capacitance for NC3 exhibited superior galvanstatic charging and discharging (GCD) characteristics with high specific capacitance of 294 F g−1 at high current density of 1 A g−1 and revealed that the obtained electrode is suitable for supercapacitor applications.

Graphical abstract

Hydrothermal synthesis using an excess of Co source leads to smaller and more uniform particle size. This particle size and the slightly larger crystallite size formed in the materials leads to the improved electrochemical performance of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Umeshbabu E, Rajeshkhanna G, Ranga Rao G (2016) J Solid State Electrochem 20:837–1844

    Article  Google Scholar 

  2. Jokar E, Izad A, Shahrokhian S (2015) J Solid State Electrochem 19:269–274

    Article  Google Scholar 

  3. Zhang Y, Wang J, Yu L, Wang L, Wan P, Wei H, Lin L, Hussain S (2017) Ceramics International 43:2057–2062

    Article  Google Scholar 

  4. Qi X, Zheng W, He G, Tian T, Du N, Wang L (2017) Chem Eng J 309:426–434

    Article  Google Scholar 

  5. Ezeigwe ER, Khiew PS, Siong CW, Tan TT (2017) J Alloys Compd 693:133–1142

    Article  Google Scholar 

  6. Huanga W, Cao Y, Huang W, Chen Y, Peng J, Lee X, Tu J (2017) Appl Surf Sci 396:804–811

    Article  Google Scholar 

  7. Chen S, Chen H, Fan M, Li C, Shu K (2016) J Sol–Gel Sci Technol 80:119–125

    Article  Google Scholar 

  8. Xue J, Ma W, Wang L, Cui H (2016) J Sol–Gel Sci Technol 78:120–125

    Article  Google Scholar 

  9. Bera S, Das N, Pal M, Mahanty S, Jana S (2015) J Sol–Gel Sci Technol 76:402–413

    Article  Google Scholar 

  10. Xu L, Chen H, Shu K (2016) J Sol–Gel Sci Technol 77:463–469

    Article  Google Scholar 

  11. Wang L, Ma W, Li Y, Cui H (2016) Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method. J Sol–Gel Sci Technol. https://doi.org/10.1007/s10971-016-4275-x

  12. Zou L, Shen X, Wang Q, Wang Z, Yang X, Jing M (2015) J Sol–Gel Sci Technol 75:54–62

    Article  Google Scholar 

  13. Sathishkumar K, Shanmugam N, Kannadasan N, Cholan S, Viruthagiri G (2015) J Sol–Gel Sci Technol 74:621–630

    Article  Google Scholar 

  14. Ge C, Hou Z, He B, Zeng F, Cao J, Liu Y, Kuang Y (2012) J Sol–Gel Sci Technol 63:146–152

    Article  Google Scholar 

  15. Cui H, Zhang F, Ma W, Wang L, Xue J (2016) J Sol–Gel Sci Technol 79:83–88

    Article  Google Scholar 

  16. Umeshbabu E, Rajeshkhanna G, Justin P, Ranga Rao G (2015) RSC Adv 5:66657–66666

    Article  Google Scholar 

  17. Liu Q, Xiao K, Xu Z, Li N, Su Z, Wanga J, Chen S (2013) RSC Adv 3:34372–34380

    Google Scholar 

  18. Zhong H, Wang L, Li R, Wang W, Ou N, Tong X (2012) Mater Chem 22:5656–5665

    Article  Google Scholar 

  19. Delong Li, Youning Gong, Miaosheng Wang, Chunxu Pan (2017) Nano-Micro Lett. https://doi.org/doi 10.1007/s40820-016-0117-1

  20. Cui B, Lin H, Liu Z, Li B, Sun P, Zhao X, Liu C (2009) J Phys Chem C 113:14083–14087

    Article  Google Scholar 

  21. Rada H, Haghighia M, Eslamia A, Rahmania F, Rahemia N (2016) Int J Hydrogen Energy 41:5335–5350

    Article  Google Scholar 

  22. Patzke GR, Zhou Y, Kontic R, Conrad F (2010) Angew Chem Int Edn 50:826–859

    Article  Google Scholar 

  23. Meher SK, Justin P, RangaRao G (2011) Nanoscale 3:683–692

    Article  Google Scholar 

  24. Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) J. Phys. Chem. C 116:12448–12454

    Article  Google Scholar 

  25. Nicholson RS, Shain I (1964) Anal. Chem. 36(706):1351–1355

    Google Scholar 

  26. Ma G, Zhang Z, Peng H, Sun K, Ran F, Lei Z (2016) J Solid State Electrochem 20:1613–1624

    Article  Google Scholar 

  27. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Nano Lett 12:321–325

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Start-Up Research Grant No.F.30-326/2016 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, B., Priyadharshini, T., Ravi, G. et al. Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol-Gel Sci Technol 84, 297–305 (2017). https://doi.org/10.1007/s10971-017-4504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4504-y

Keywords

Navigation