Skip to main content
Log in

Synthesis and characterization of Cu2+ doped NiO electrode for supercapacitor application

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystals of Ni1−xCuxO have been synthesized by a simple chemical precipitation method. X-ray diffraction studies showed that the samples have pure cubic phase and the average size of the nanocrystals is found to be in the range of 6.52–13.4 nm. The morphology of NiO nanocrystals analyzed by SEM showed a considerable change from nanoparticles to nanorods on doping and confirmed by FE-TEM analysis. The energy dispersive X-ray analysis results showed that the compositions of the elements are relevant as expected from the synthesis. The optical properties of the nanostructures were also investigated by Photoluminescence spectra. The magnetic properties were investigated at room temperature using the vibrating sample magnetometer and the hysteresis loops confirmed the ferromagnetic behavior of NiO on doping due to smaller size effect. The specific capacitance behavior studied by cyclic voltammetry measurements showed higher specific capacitance on lower concentration of doping which made it as promising electrode material for supercapacitor application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bandara J, Divarathne CM, Nanayakkara SD (2004) Solar Cells 81:429

    Article  Google Scholar 

  2. Bandara J, Weerasinghe H (2005) Solar Cells 85:385–390

    Article  Google Scholar 

  3. Salavati-Niasari M, Mir N, Davar F (2010) J Alloys Compd 493:163–168

    Article  Google Scholar 

  4. Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) J Alloys Compd 489:667–673

    Article  Google Scholar 

  5. Wu MS, Wang MJ, Jow JJ (2010) J Power Sources 195:3950–3955

    Article  Google Scholar 

  6. Kodama RH, Makhlouf A, Berkowitz AE (1997) Phys Rev Lett 79:1393

    Article  Google Scholar 

  7. Parada C, Moran E (2006) Chem Mater 18:2179

    Article  Google Scholar 

  8. Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M (2005) J Phys Chem B 109:13403

    Article  Google Scholar 

  9. Khadar MA, Biju V, Inoue A (2003) Mater Res Bull 38:1341

    Article  Google Scholar 

  10. Li Y, Wang J, Cai J, Ying M, Zhao R, Li M, Nan CW (2006) Phys Rev B 73:193308

    Article  Google Scholar 

  11. Seehra MS, Shim H, Dutta P, Manivannam A, Bonevich J (2005) J Appl Phys 97:10J509

    Article  Google Scholar 

  12. Ahmad T, Ramanujachary KV, Loflandand SE, Ganguly AK (2006) Solid State Sci 8:425

    Article  Google Scholar 

  13. Rozati SM, Akeste S (2008) Cryst Res Technol 43(3):273

    Article  Google Scholar 

  14. Ameen S, Akhter MS, Seo H-K, Kim YS, Shin HS (2012) Chem Eng J 187:351

    Article  Google Scholar 

  15. Kiomarsipour N, Shoja Razavi R (2013) Ceramic. International 39:813

    Google Scholar 

  16. Shi R, Yang P, Dong X, Ma Q, Zhang A (2013) Appl Surf Sci 264:162

    Article  Google Scholar 

  17. Yuan Guohui, Liu Yunfu, Yue Min, Li Hongju, Liu Encheng, Huang Youyuan, Kong Dongliang (2014) Ceram Int 40:9101–9105

    Article  Google Scholar 

  18. Bora C, Dolui SK (2012) Polymer 53:923–932

    Article  Google Scholar 

  19. Ramachandran R, Felix S, Joshi GM, Ragupathy BPC, Jeong SK, Grace AN (2013) Mater Res Bull 48:3834–3842

    Article  Google Scholar 

  20. Zhao GY, Xu CL, Li HL (2007) J Power Sources 163:1132–1136

    Article  Google Scholar 

  21. Muthukumaran S, Gopalakrishnan R (2012) Opt Mater 34:1946–1953

    Article  Google Scholar 

  22. Manna SK De (2009) Solid State Commun 149:297–300

    Article  Google Scholar 

  23. Kong YC, YU DP, Zhang B, Fang SQ, Feng W (2001) Appl Phys Lett 78:407

    Article  Google Scholar 

  24. Vanheusden K, Seager CH, Warren WL, Tallant DR, Vogit JA (1996) Appl Phys Lett 68:403

    Article  Google Scholar 

  25. Xu L, Ding YS, Chen CH, Zhao L, Rimkus C, Joesten R, Suib SL (2008) Chem Mater 20:308

    Article  Google Scholar 

  26. Sun D, Zhang J, Ren H, Cui Z, Sun D (2010) J Phys Chem C 114:12110

    Article  Google Scholar 

  27. Jeevanandam P, Koltypin Y, Gedanken A (2001) Nano Lett 1:263

    Article  Google Scholar 

  28. Zotov N, Petrov K, Pankova MD (1990) J Phys Chem Solids 51:1199

    Article  Google Scholar 

  29. Socrates G (1994) Infrared characteristic group frequencies-tables and charts, 2nd edn. Wiley, England

    Google Scholar 

  30. Shindea SS, Gunda GS, Dubalb DP, Jamburea SB, Lokhande CD (2014) Electrochim Acta 119:1–10

    Article  Google Scholar 

  31. Jayalakshmi M, Balasubramanian K (2008) Int J Electrochem Sci 3:1196–1217

    Google Scholar 

  32. Patil UM, Salunkhe RR, Gurav KV (2008) et al. Appl Surf Sci 225:2603–2607

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. S. Barathan, Professor and Head, Department of Physics, Annamalai University, for providing necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shanmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathishkumar, K., Shanmugam, N., Kannadasan, N. et al. Synthesis and characterization of Cu2+ doped NiO electrode for supercapacitor application. J Sol-Gel Sci Technol 74, 621–630 (2015). https://doi.org/10.1007/s10971-015-3641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3641-4

Keywords

Navigation