Skip to main content

Advertisement

Log in

Facile Cetyl Trimethyl Ammonium Bromide-assisted Hydrothermal Synthesis of Spinel NiCo2O4 Nanoplates as an Electrode Material for Supercapacitor Application

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ternary NiCo2O4 has paying more attention as a class of potential electrochemical energy storage materials. In the present endeavor, we report spinel NiCo2O4 nanoplates, which were prepared by cetyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal technique followed by proper calcination process. The structural and morphological features were characterized by x-ray diffraction, Fourier transform infrared spectra, scanning electron microscope and high-resolution transmission electron microscopic analyses. The supercapacitive properties of the materials were evaluated using cyclic voltammetric, electrochemical impedance spectroscopy and galvanostatic charge/discharge analysis in 1 M NaOH electrolyte. The freshly prepared NiCo2O4 materials offer the specific capacitance of 329 mA h g−1 at a current density of 1 A g−1, and it provides superior long-term cyclic stability, which retained 97% of initial capacitance after 2000 continuous CV cycles at a high scan rate of 100 mV s−1. These outcomes demonstrate thus prepared spinel NiCo2O4 as a significant electrode material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhou, Z. Mao, W. Wang, Z. Yang, and X. Liu, In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials, ACS Appl. Mater. Interfaces, 2016, 8(42), p 28904–28916.

    Article  CAS  Google Scholar 

  2. Y. Wang, H. Chai, H. Dong, J. Xu, D. Jia, and W. Zhou, Superior Cycle Stability Performance of Quasi-Cuboidal CoV2O6 Microstructures as Electrode Material for Supercapacitors, ACS Appl. Mater. Interfaces, 2016, 8(40), p 27291–27297.

    Article  CAS  Google Scholar 

  3. C. Zhang, Q. Chen, and H. Zhan, Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH)2 Nanoplates with Enhanced Electrochemical Performance, ACS Appl. Mater. Interfaces, 2016, 8(35), p 22977–22987.

    Article  CAS  Google Scholar 

  4. X. Wang, C. Yan, A. Sumboja, and P.S. Lee, High Performance Porous Nickel Cobalt Oxide Nanowires for Asymmetric Supercapacitor, Nano Energy, 2014, 3, p 119–126. https://doi.org/10.1016/j.nanoen.2013.11.001

    Article  CAS  Google Scholar 

  5. Y. Tang, Y. Liu, S. Yu, S. Mu, S. Xiao, Y. Zhao, and F. Gao, Morphology Controlled Synthesis of Monodisperse Cobalt Hydroxide for Supercapacitor with High Performance and Long Cycle Life, J. Power Sources, 2014, 256, p 160–169. https://doi.org/10.1016/j.jpowsour.2014.01.064

    Article  CAS  Google Scholar 

  6. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, and S.J. Kim, Carbothermal Conversion of Siloxene Sheets into Silicon-Oxy-Carbide Lamellae for High-Performance Supercapacitors, Chem. Eng. J., 2020, 387, p 123886. https://doi.org/10.1016/j.cej.2019.123886

    Article  CAS  Google Scholar 

  7. V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, D. Kesavan, and S.J. Kim, Two Dimensional Famatinite Sheets Decorated on Reduced Graphene Oxide: A Novel Electrode for High Performance Supercapacitors, J. Power Sources, 2019, 433, p 126648. https://doi.org/10.1016/j.jpowsour.2019.05.056

    Article  CAS  Google Scholar 

  8. T. Zhu, E.R. Koo, and G.W. Ho, Shaped-Controlled Synthesis of Porous NiCo2O4 with 1–3 Dimensional Hierarchical Nanostructures for High-Performance Supercapacitors, RSC Adv., 2015, 5(3), p 1697–1704.

    Article  CAS  Google Scholar 

  9. Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, and X. Ji, Porous NiCo2O4 Spheres Tuned through Carbon Quantum Dots Utilised as Advanced Materials for an Asymmetric Supercapacitor, J. Mater. Chem. A, 2015, 3(2), p 866–877.

    Article  CAS  Google Scholar 

  10. P. Simon, Materials for Electrochemical Capacitors, Nat. Mater., 2008, 7, p 845–854.

    Article  CAS  Google Scholar 

  11. J.R. Miller and P. Simon, Materials Science: Electrochemical Capacitors for Energy Management, Science, 2008, 321(5889), p 651–652.

    Article  CAS  Google Scholar 

  12. D. He, G. Liu, A. Pang, Y. Jiang, H. Suo, and C. Zhao, A High-Performance Supercapacitor Electrode Based on Tremella-like NiCo2O4 @NiO Core/Shell Hierarchical Nanostructures on Nickel Foam, Dalt. Trans., 2017, 46(6), p 1857–1863.

    Article  CAS  Google Scholar 

  13. S.K. Balasingam, M. Lee, B.H. Kim, J.S. Lee, and Y. Jun, Freeze-Dried MoS2 Sponge Electrodes for Enhanced Electrochemical Energy Storage, Dalt. Trans., 2017, 46(7), p 2122–2128.

    Article  CAS  Google Scholar 

  14. C. Zheng, C. Cao, R. Chang, J. Hou, and H. Zhai, Hierarchical Mesoporous NiCo2O4 Hollow Nanocubes for Supercapacitors, Phys. Chem. Chem. Phys., 2016, 18(8), p 6268–6274.

    Article  CAS  Google Scholar 

  15. V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara, and A.K. Tyagi, Electrochemical Supercapacitor Performance of SnO2 Quantum Dots, Electrochim. Acta, 2016, 203, p 230–237. https://doi.org/10.1016/j.electacta.2016.03.153

    Article  CAS  Google Scholar 

  16. S.N. Pusawale, P.R. Deshmukh, and C.D. Lokhande, Chemical Synthesis of Nanocrystalline SnO2 thin Films for Supercapacitor Application, Appl. Surf. Sci., 2011, 257(22), p 9498–9502. https://doi.org/10.1016/j.apsusc.2011.06.043

    Article  CAS  Google Scholar 

  17. F. Cao, G.X. Pan, P.S. Tang, and H.F. Chen, Hydrothermal-Synthesized Co(OH)2 Nanocone Arrays for Supercapacitor Application, J. Power Sources, 2012, 216, p 395–399. https://doi.org/10.1016/j.jpowsour.2012.05.073

    Article  CAS  Google Scholar 

  18. X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, and M. Liu, Three-Dimensional Ultrathin Ni(OH)2 Nanosheets Grown on Nickel Foam for High-Performance Supercapacitors, Nano Energy, 2015, 11, p 154–161. https://doi.org/10.1016/j.nanoen.2014.10.029

    Article  CAS  Google Scholar 

  19. S.J. Bao, C.M. Li, C.X. Guo, and Y. Qiao, Biomolecule-Assisted Synthesis of Cobalt Sulfide Nanowires for Application in Supercapacitors, J. Power Sources, 2008, 180(1), p 676–681.

    Article  CAS  Google Scholar 

  20. P.R. Jothi, R.R. Salunkhe, M. Pramanik, S. Kannan, and Y. Yamauchi, Surfactant-Assisted Synthesis of Nanoporous Nickel Sulfide Flakes and Their Hybridization with Reduced Graphene Oxides for Supercapacitor Applications, RSC Adv., 2016, 6(25), p 21246–21253.

    Article  CAS  Google Scholar 

  21. Y. Zhong, X.H. Xia, F. Shi, J.Y. Zhan, J.P. Tu, and H.J. Fan, Transition Metal Carbides and Nitrides in Energy Storage and Conversion, Adv. Sci., 2015, 3(5), p 1500286.

    Article  Google Scholar 

  22. C.C. Hu, K.H. Chang, M.C. Lin, and Y.T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for next Generation Supercapacitors, Nano Lett., 2006, 6(12), p 2690–2695.

    Article  CAS  Google Scholar 

  23. D. Gueon and J.H. Moon, MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors, ACS Sustain. Chem. Eng., 2017, 5(3), p 2445–2453.

    Article  CAS  Google Scholar 

  24. M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. Xiong, and Q. Wang, NiO Hierarchical Hollow Nanofibers as High-Performance Supercapacitor Electrodes, RSC Adv., 2015, 5(116), p 96205–96212.

    Article  CAS  Google Scholar 

  25. N.G. Prakash, M. Dhananjaya, A.L. Narayana, D.P. Shaik, P. Rosaiah, and O.M. Hussain, High Performance One Dimensional α-MoO3 Nanorods for Supercapacitor Applications, Ceram. Int., 2018, https://doi.org/10.1016/j.ceramint.2018.03.032

    Article  Google Scholar 

  26. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, and Z.L. Wang, Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems, ACS Nano, 2013, 7(3), p 2617–2626.

    Article  CAS  Google Scholar 

  27. J. Zhao, X. Zhang, M. Li, S. Lu, and P. Yang, Synthesis of Precursor-Derived 1D to 2D Co3O4 Nanostructures and Their Pseudo Capacitance Behaviour, CrystEngComm, 2016, 18(41), p 8020–8029. https://doi.org/10.1039/c6ce01676f

    Article  CAS  Google Scholar 

  28. Q. Qu, Y. Zhu, X. Gao, and Y. Wu, Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High Performance Anode Material for Supercapacitors, Adv. Energy Mater., 2012, 2(8), p 950–955.

    Article  CAS  Google Scholar 

  29. Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, and D. Xiao, Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor, ACS Appl. Mater. Interfaces, 2014, 6(3), p 1773–1780.

    Article  CAS  Google Scholar 

  30. A.K. Yedluri and H.J. Kim, Enhanced Electrochemical Performance of Nanoplate Nickel Cobaltite (NiCo2O4) Supercapacitor Applications, RSC Adv., 2019, 9(2), p 1115–1122.

    Article  CAS  Google Scholar 

  31. C. Hao, S. Zhou, J. Wang, X. Wang, H. Gao, and C. Ge, Preparation of Hierarchical Spinel NiCo2O4 Nanowires for High-Performance Supercapacitors, Ind. Eng. Chem. Res., 2018, 57(7), p 2517–2525.

    Article  CAS  Google Scholar 

  32. S. Gao, F. Liao, S. Ma, L. Zhu, and M. Shao, Network-like Mesoporous NiCo2O4 Grown on Carbon Cloth for High-Performance Pseudocapacitors, J. Mater. Chem. A, 2015, 3(32), p 16520–16527.

    Article  CAS  Google Scholar 

  33. L. Liu, H. Zhang, J. Yang, Y. Mu, and Y. Wang, Self-Assembled Novel Dandelion-like NiCo2O4 Microspheres@nanomeshes with Superior Electrochemical Performance for Supercapacitors and Lithium-Ion Batteries, J. Mater. Chem. A, 2015, 3(44), p 22393–22403.

    Article  CAS  Google Scholar 

  34. H.S. Crystals, & Design 2009, 2009, p 3–6.

  35. R.Q. Song, A.W. Xu, B. Deng, and Y.P. Fang, Novel Multilamellar Mesostructured Molybdenum Oxide Nanofibers and Nanobelts: Synthesis and Characterization, J. Phys. Chem. B, 2005, 109(48), p 22758–22766.

    Article  CAS  Google Scholar 

  36. P. Sivakumar, M. Jana, M. Kota, H.S. Lee, and H.S. Park, Porous Interconnected NiCo2O4 Nanosheets and Nitrogen- and Sulfur-Codoped Reduced Graphene Oxides for High-Performance Hybrid Supercapacitors, J. Alloys Compd., 2019, 781, p 515–523. https://doi.org/10.1016/j.jallcom.2018.12.013

    Article  CAS  Google Scholar 

  37. T. Kim, A. Ramadoss, B. Saravanakumar, G. Kumar, and S. Jae, Applied Surface Science Synthesis and Characterization of NiCo2O4 Nanoplates as Efficient Electrode Materials for Electrochemical Supercapacitors, Appl. Surf. Sci., 2016, 370, p 452–458. https://doi.org/10.1016/j.apsusc.2016.02.147

    Article  CAS  Google Scholar 

  38. R.S. Yadav, A.C. Pandey, and S.S. Sanjay, ZnO Porous Structures Synthesized by CTAB-Assisted Hydrothermal Process, Struct. Chem., 2007, 18(6), p 1001–1004.

    Article  CAS  Google Scholar 

  39. Y.X. Wang, J. Sun, X. Fan, and X. Yu, A CTAB-Assisted Hydrothermal and Solvothermal Synthesis of ZnO Nanopowders, Ceram. Int., 2011, 37(8), p 3431–3436.

    Article  CAS  Google Scholar 

  40. X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li, A CTAB-Assisted Hydrothermal Orientation Growth of ZnO Nanorods, Mater. Chem. Phys., 2003, 78(1), p 99–104.

    Article  Google Scholar 

  41. G.R. Patzke, Y. Zhou, R. Kontic, and F. Conrad, Oxide Nanomaterials: Synthetic Developments, Mechanistic Studies, and Technological Innovations, Angew. Chem. Int. Ed., 2011, 50(4), p 826–859.

    Article  CAS  Google Scholar 

  42. S.K. Meher, P. Justin, and G. Ranga Rao, Nanoscale Morphology Dependent Pseudocapacitance of NiO: Influence of Intercalating Anions during Synthesis, Nanoscale, 2011, 3(2), p 683–692.

    Article  CAS  Google Scholar 

  43. F. Wang, V.N. Richards, S.P. Shields, and W.E. Buhro, Kinetics and Mechanisms of Aggregative Nanocrystal Growth, Chem. Mater., 2014, 26(1), p 5–21.

    Article  Google Scholar 

  44. E. Umeshbabu, G. Rajeshkhanna, and G.R. Rao, Urchin and Sheaf-like NiCo2O4 Nanostructures: Synthesis and Electrochemical Energy Storage Application, Int. J. Hydrogen Energy, 2014, 39(28), p 15627–15638. https://doi.org/10.1016/j.ijhydene.2014.07.168

    Article  CAS  Google Scholar 

  45. Y. Gogotsi and R.M. Penner, Energy Storage in Nanomaterials—Capacitive, Pseudocapacitive, or Battery-Like?, ACS Nano, 2018, 12(3), p 2081–2083.

    Article  CAS  Google Scholar 

  46. T. Brousse, D. Bélanger, and J.W. Long, To Be or Not To Be Pseudocapacitive?, J. Electrochem. Soc., 2015, 162(5), p A5185–A5189.

    Article  CAS  Google Scholar 

  47. X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Jan, and P.S. Lee, Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application, J. Phys. Chem. C, 2012, 116(23), p 12448–12454.

    Article  CAS  Google Scholar 

  48. Y. Lei, Y. Wang, W. Yang, H. Yuan, and D. Xiao, Self-Assembled Hollow Urchin-like NiCo2O4 Microspheres for Aqueous Asymmetric Supercapacitors, RSC Adv., 2015, 5(10), p 7575–7583.

    Article  CAS  Google Scholar 

  49. J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, and P.M. Johnson, A Facile Sonochemical Assisted Synthesis of α-MnMoO4/PANI Nanocomposite Electrode for Supercapacitor Applications, J. Electroanal. Chem., 2017, 797, p 78–88. https://doi.org/10.1016/j.jelechem.2017.05.019

    Article  CAS  Google Scholar 

  50. Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, and T. Wang, High-Performance Supercapacitor and Lithium-Ion Battery Based on 3D Hierarchical NH4F-Induced Nickel Cobaltate Nanosheet-Nanowire Cluster Arrays as Self-Supported Electrodes, Nanoscale, 2013, 5(20), p 9812–9820.

    Article  CAS  Google Scholar 

  51. S. Khalid, C. Cao, A. Ahmad, L. Wang, M. Tanveer, I. Aslam, M. Tahir, F. Idrees, and Y. Zhu, Microwave Assisted Synthesis of Mesoporous NiCo2O4 Nanosheets as Electrode Material for Advanced Flexible Supercapacitors, RSC Adv., 2015, 5(42), p 33146–33154.

    Article  CAS  Google Scholar 

  52. S. Vijayakumar, S. Nagamuthu, and K.S. Ryu, CuCo2O4 Flowers/Ni-Foam Architecture as a Battery Type Positive Electrode for High Performance Hybrid Supercapacitor Applications, Electrochim. Acta, 2017, 238, p 99–106. https://doi.org/10.1016/j.electacta.2017.03.178

    Article  CAS  Google Scholar 

  53. Y. Zhu, X. Ji, R. Yin, Z. Hu, X. Qiu, Z. Wu, and Y. Liu, Nanorod-Assembled NiCo2O4 Hollow Microspheres Assisted by an Ionic Liquid as Advanced Electrode Materials for Supercapacitors, RSC Adv., 2017, 7(18), p 11123–11128.

    Article  CAS  Google Scholar 

  54. J.S. Chen, C. Guan, Y. Gui, and D.J. Blackwood, Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density, ACS Appl. Mater. Interfaces, 2017, 9(1), p 496–504.

    Article  CAS  Google Scholar 

  55. Y. Lu, Z. Zhang, X. Liu, W. Wang, T. Peng, P. Guo, H. Sun, H. Yan, and Y. Luo, NiCo2S4/Carbon Nanotube Nanocomposites with a Chain-like Architecture for Enhanced Supercapacitor Performance, CrystEngComm, 2016, 18(40), p 7696–7706. https://doi.org/10.1039/C6CE01556E

    Article  CAS  Google Scholar 

  56. V.K. Mariappana, K. Krishnamoorthy, P. Pazhamalaia, S. Sahoo, S.S. Nardekara, and S.-J. Kim, Nanostructured Ternary Metal Chalcogenide-based Binder-free Electrodes for High Energy Density Asymmetric Supercapacitors, Nano Energy, 2019, 57, p 307–316. https://doi.org/10.1016/j.nanoen.2018.12.031

    Article  CAS  Google Scholar 

  57. X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, and J. Tu, Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials, ACS Appl. Mater. Interfaces, 2013, 5(17), p 8790–8795.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiruthuvadevaraj Antony Sandosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandosh, T.A., Simi, A., Doss, F.P.A. et al. Facile Cetyl Trimethyl Ammonium Bromide-assisted Hydrothermal Synthesis of Spinel NiCo2O4 Nanoplates as an Electrode Material for Supercapacitor Application. J. of Materi Eng and Perform 29, 8395–8405 (2020). https://doi.org/10.1007/s11665-020-05273-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05273-z

Keywords

Navigation