Skip to main content

Advertisement

Log in

Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, large-sized monolithic methyltrimethoxysilane-based silica aerogels were prepared via a facile sol–gel route using ambient pressure drying. The structural, morphological, and hydrophobic properties of the aerogels were characterized by scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller method, and contact angle. Thermal conductivity, thermal stability, and mechanical properties of the samples were also evaluated. The ambient pressure dried aerogels showed macro-pore structure and low density (as low as 75 kg m−3). The Young’s modulus of the aerogels was observed to increase from 0.043 to 1.102 MPa with an increase in the density of the aerogels from 75 to 141 kg m−3. Simultaneously, the aerogels exhibited superhydrophobicity (>150°), low thermal conductivity (0.036 W m−1 K−1), and good thermal stability in air atmosphere. Both the simple fabricating process and the superior performance of the monolithic silica aerogel make it as a promising candidate for energy-saving sector.

Graphical Abstract

Large-sized monolithic methyltrimethoxysilane-based silica aerogel with superhydrophobicity was successfully prepared by a one-step sol–gel method via ambient pressure drying using methyltrimethoxysilane as precursor, distilled water as solvent, and ammonia as alkali catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non-Cryst Solids 225:364–368

    Article  Google Scholar 

  2. Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  3. Kistler S (1932) Coherent expanded-aerogels. J Phys Chem 36:52–64

    Article  Google Scholar 

  4. Scherer GW (1990) Theory of drying. J Am Ceram Soc 73:3–14

    Article  Google Scholar 

  5. Leventis N, Lu H (2011) Polymer-crosslinked aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook, Springer, New York, p 251–285

  6. Wei TY, Lu SY, Chang YC (2008) Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. J Phys Chem B 112:11881–11886

    Article  Google Scholar 

  7. Prakash SS, Brinker CJ, Hurd AJ (1995) Silica aerogel films at ambient pressure. J Non-Cryst Solids 190:264–275

    Article  Google Scholar 

  8. Prakash SS, Hurd AJ, Rao SM, Brinker CJ (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374:439

    Article  Google Scholar 

  9. Wang J, Zhang Y, Wei Y, Zhang X (2015) Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Micropor Mesopor Mater 218:192–198

    Article  Google Scholar 

  10. Yun S, Luo H, Gao Y (2014) Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J Mater Chem A 2:14542–14549

    Article  Google Scholar 

  11. Yun S, Luo H, Gao Y (2015) Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3:3390–3398

    Article  Google Scholar 

  12. Einarsrud MA, Nilsen E (1998) Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J Non-Cryst Solids 226:122–128

    Article  Google Scholar 

  13. Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: new materials in electrochemistry. J Mater Chem 11:963–980

    Article  Google Scholar 

  14. Haereid S, Dahle M, Lima S, Einarsrud MA (1995) Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J Non-Cryst Solids 186:96–103

    Article  Google Scholar 

  15. Hæreid S, Nilsen E, Einarsrud MA (1996) Properties of silica gels aged in TEOS. J Non-Cryst Solids 204:228–234

    Article  Google Scholar 

  16. Wei TY, Chang TF, Lu SY, Chang YC (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90:2003–2007

    Article  Google Scholar 

  17. Rao AP, Rao AV, Pajonk G (2007) Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl Surf Sci 253:6032–6040

    Article  Google Scholar 

  18. Sarawade PB, Shao GN, Quang DV, Kim HT (2013) Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure. Appl Surf Sci 287:84–90

    Article  Google Scholar 

  19. He P, Gao XD, Li XM, Jiang ZW, Yang ZH, Wang CL, Gu ZY (2014) Highly transparent silica aerogel thick films with hierarchical porosity from water glass via ambient pressure drying. Mater Chem Phys 147:65–74

    Article  Google Scholar 

  20. Shao Z, Luo F, Cheng X, Zhang Y (2013) Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater Chem Phys 141:570–575

    Article  Google Scholar 

  21. Bangi UK, Jung IK, Park CS, Baek S, Park HH (2013) Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process and ambient pressure drying. Solid State Sci 18:50–57

    Article  Google Scholar 

  22. Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225:24–29

    Article  Google Scholar 

  23. Lee C, Kim G, Hyun S (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. J Mater Sci 37:2237–2241

    Article  Google Scholar 

  24. Hwang SW, Kim TY, Hyun SH (2010) Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying. Micropor Mesopor Mater 130:295–302

    Article  Google Scholar 

  25. Rao AV, Kulkarni MM, Pajonk GM, Amalnerkar DP, Seth T (2003) Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J Sol-Gel Sci Techn 27:103–109

    Article  Google Scholar 

  26. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-Cryst Solids 330:187–195

    Article  Google Scholar 

  27. Ochoa M, Durães L, Beja A (2012) Portugal, study of the suitability of silica based xerogels synthesized using ethyltrimethoxysilane and/or methyltrimethoxysilane precursors for aerospace applications. J Sol-Gel Sci Techn 61:151–160

    Article  Google Scholar 

  28. Rao AV, Bhagat SD, Hirashima H, Pajonk G (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interf Sci 300:279–285

    Article  Google Scholar 

  29. Nadargi DY, Rao AV (2009) Methyltriethoxysilane: new precursor for synthesizing silica aerogels. J Alloys Comp 467:397–404

    Article  Google Scholar 

  30. Nadargi D, Latthe S, Rao AV (2009) Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol-gel process. J Sol-Gel Sci Techn 49:53–59

    Article  Google Scholar 

  31. Aravind PR, Soraru GD (2011) High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying. J Porous Mater 18:159–165

    Article  Google Scholar 

  32. Bhagat SD, Oh CS, Kim YH, Ahn YS, Yeo JG (2007) Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying. Micropor Mesopor Mater 100:350–355

    Article  Google Scholar 

  33. Xu B, Cai JY, Xie Z, Wang L, Burgar I, Finn N, Cai Z, Wong L (2012) An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure part II: microstructure and performance of the aerogels. Micropor Mesopor Mater 148:152–158

    Article  Google Scholar 

  34. Xu B, Cai JY, Finn N, Cai Z (2012) An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure part I: process development and macrostructures of the aerogels. Micropor Mesopor Mater 148:145–151

    Article  Google Scholar 

  35. Yun S, Luo H, Gao Y (2014) Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties. RSC Adv 4:4535–4542

    Article  Google Scholar 

  36. Wong JC, Kaymak H, Tingaut P, Brunner S, Koebel MM (2015) Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mater 217:150–158

    Article  Google Scholar 

  37. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593

    Article  Google Scholar 

  38. Liu M, Gan L, Pang Y, Xu Z, Hao Z, Chen L (2008) Synthesis of titania-silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf A Physicochem Eng Asp 317:490–495

    Article  Google Scholar 

  39. Deshpande R, Hua DW, Smith DM, Brinker CJ (1992) Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension. J Non-Cryst Solids 144:32–44

    Article  Google Scholar 

  40. Brinker CJ, Deshpande R, Smith DM (1996) Preparation of high porosity xerogels by chemical surface modification. U.S. Patent No. 5,565,142.

  41. Hrubesh L (1990) Aerogels: the world’s lightest solids. Chem Ind 24:824–827.

  42. Swimm K, Reichenauer G, Vidi S, Ebert HP (2009) Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int J Thermophys 30:1329–1342

    Article  Google Scholar 

  43. Lu X, Schuster MA (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971

    Article  Google Scholar 

  44. Hayase G, Kanamori K, Abe K, Yano H, Maeno A, Kaji H, Nakanishi K (2014) Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interf 6:9466–9471

    Article  Google Scholar 

  45. Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. ACS Appl Mater Interf 7:2016–2024

    Article  Google Scholar 

  46. Groβ J, Fricke J (1995) Scaling of elastic properties in highly porous nanostructured aerogels. Nanostruct Mater 6:905–908

    Article  Google Scholar 

  47. Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223:179–189

    Article  Google Scholar 

  48. Girona MM, Roig A, Molins E, Martınez E, Esteve J (1999) Micromechanical properties of silica aerogels. Appl Phys Lett 75:653–655

    Article  Google Scholar 

  49. Kucheyev S, Stadermann M, Shin S, Satcher J, Gammon S, Letts S, Van Buuren T, Hamza A (2012) Super-compressibility of ultralow-density nanoporous silica. Adv Mater 24:776–780

    Article  Google Scholar 

  50. Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non-Cryst Solids 18:23–29

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by State Outstanding Young Scholars (contract No: 51325203), Opening Funding of Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry (contract No: SF201506 and SF201507), and the Natural Science Foundation of Jiangsu Province (Grants No: BK20130420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Yun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Guo, T., Zhang, J. et al. Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying. J Sol-Gel Sci Technol 83, 53–63 (2017). https://doi.org/10.1007/s10971-017-4377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4377-0

Keywords

Navigation