Skip to main content
Log in

High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper we report the synthesis of methyltriethoxysilane (MTES) based aerogels by non-supercritical/ambient pressure drying. The alcogels have been aged in different concentrations of silane precursor solutions before drying and aerogels with low density and high porosity were obtained. The 60% vol silane aged aerogel shows a surface area of 416 m2/g with a pore volume of 0.99 cm3/g and a maximum surface area of 727 m2/g was obtained for 80% vol silane aged aerogel. The non-silane aged sample possess a surface area of 471 m2/g with a total pore volume of 0.83 cm3/g. The aerogels show broad pore-size distribution. The FT-IR studies reveal the retention of Si–C bond in the network and the formation of a hydrophobic gel. The 29Si magic angle spinning nuclear magnetic resonance (29Si MAS-NMR) studies were also employed to characterize the local environment around the silicon atoms and to obtain information on the condensation degree of the gel network. By varying the hydrolysis pH, highly flexible aerogels have also been successfully prepared. The porosity studies on the flexible aerogels are also presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S. Kistler, Nature (London) 127, 741 (1931)

    Article  CAS  Google Scholar 

  2. G.C. Bond, S. Flamerz, Appl. Catal. 33, 219 (1987)

    Article  CAS  Google Scholar 

  3. C.A.M. Mulder, J.G. Van Lierop, in Aerogels, ed. by J. Fricke (Springer, Berlin, 1986), p. 68

    Google Scholar 

  4. J.L. Mohanan, S.L. Brock, J. Non-Cryst. Solids 350, 1 (2004)

    Article  CAS  Google Scholar 

  5. M. Schmidt, F. Schwertfeger, J. Non-Cryst. Solids 225, 364 (1998)

    Article  CAS  Google Scholar 

  6. V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, J. Non-Cryst. Solids 186, 244 (1995)

    Article  CAS  Google Scholar 

  7. J. Chwastowski, J. Figiel, A. Kotarba, K. Olkiewicz, L. Suszycki, Nucl. Instrum. Methods Phys. Res. A 504, 222 (2003)

    Article  CAS  Google Scholar 

  8. Y. Liu, L. Zhang, X. Yao, C. Xu, Mater. Lett. 49, 102 (2001)

    Article  CAS  Google Scholar 

  9. K.I. Jensen, J.M. Schultz, F.H. Kristiansen, J. Non-Cryst. Solids 350, 351 (2004)

    Article  CAS  Google Scholar 

  10. S. Maury, P. Buisson, A.C. Pierre, J. Mol, B. Catal, Enzymatic 19–20, 269 (2002)

    Article  Google Scholar 

  11. K.Y. Jang, K. Kim, R.S. Upadhye, J. Vac. Sci. Technol. A 8(3), 1732 (1990)

    Article  CAS  Google Scholar 

  12. P. Tsou, J. Non-Cryst. Solids 186, 415 (1995)

    Article  CAS  Google Scholar 

  13. T. Woignier, J. Reynes, J. Phalippou, J.L. Dussossoy, N.N. Jacquet-Francillon, J. Non-Cryst. Solids 225, 353 (1998)

    Article  CAS  Google Scholar 

  14. S.S. Prakash, C.J. Brinker, A.J. Hued, S.M. Rao, Nature 374, 439 (1995)

    Article  CAS  Google Scholar 

  15. F. Schwertfeger, D. Frank, M. Schmidt, J. Non-Cryst. Solids 225, 24 (1998)

    Article  CAS  Google Scholar 

  16. M.-A. Einarsrud, S. Haereid, J. Sol-Gel. Sci. Technol. 2, 903 (1994)

    Article  CAS  Google Scholar 

  17. S. Haereid, M. Dahle, S. Lima, M.-A. Einarsrud, J. Non-Cryst. Solids 186, 96 (1995)

    Article  CAS  Google Scholar 

  18. R. Deshpande, D. Smith, C.J. Brinker. US patent No. 5, 565,142 (1996)

  19. N. Leventis, A. Plazer, L. McCorkle, J. Sol-Gel. Sci. Technol. 35, 99 (2005)

    Article  CAS  Google Scholar 

  20. S. Smitha, P. Shajesh, P.R. Aravind, S. Rajesh Kumar, P. Krishna Pillai, K.G.K. Warrier, Micropor. Mesopor. Mater. 91, 286 (2006)

    Article  CAS  Google Scholar 

  21. S.D. Bhagat, Y.-H. Kim, Y.-S. Ahn, J.-G. Yeo, Micropor. Mesopor. Mater. 96, 237 (2006)

    Article  CAS  Google Scholar 

  22. P.R. Aravind, P. Mukundan, P. Krishna Pillai, K.G.K. Warrier, Micropor. Mesopor. Mater. 96, 14 (2006)

    Article  CAS  Google Scholar 

  23. S.D. Bhagat, Y.H. Kim, K.H. Suh, Y.S. Ahn, J.G. Yeo, J.H. Han, Micropor. Mesopor. Mater. 112, 504 (2008)

    Article  CAS  Google Scholar 

  24. D.Y. Nadargi, A.V. Rao, J. Alloys Compd. 467, 397 (2009)

    Article  CAS  Google Scholar 

  25. S.D. Bhagat, C.-S. Oh, Y.-H. Kim, Y.-S. Ahn, J.-G. Yeo, Micropor. Mesopor. Mater. 100, 350 (2007)

    Article  CAS  Google Scholar 

  26. K. Kanamori, M. Aizawa, K. Nakanishi, T. Hanada Adv. Mater. 19, 1589 (2007)

    Article  CAS  Google Scholar 

  27. J.G. Reynolds, P.R. Coronado, L.W. Hrubesh, J. Non-Cryst. Solids 292, 127 (2001)

    Article  CAS  Google Scholar 

  28. H. Bréquel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel, S. Masse, J. Latournerie, P. Dempsey, C. Turquat, A. Desmartin-Chomel, L. Le Neindre-Prum, U.A. Jayasooriya, D. Hourlier, H.-J. Kleebe, G.D. Sorarù, S. Enzo, F. Babonneau, Chem. Mater. 16, 2585 (2004)

    Article  Google Scholar 

  29. L. Biasetto, R. Pena-Alonso, G.D. Soraru, P. Colombo, Adv. Appl. Ceram. 107, 106 (2008)

    Article  CAS  Google Scholar 

  30. A.V. Rao, S.D. Bhagat, Solid State Sci. 6, 945 (2004)

    Article  CAS  Google Scholar 

  31. S. Brunauer, P.H. Emmet, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  32. E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  33. A.C. Della Volpe, D. Maniglio, M. Morra, S. Siboni, Colloids Surf. A 206, 46 (2002)

    Google Scholar 

  34. B.M. Bortolotti, M. Brugnara, C. Della Volpe, S. Siboni, J. Colloid Interf. Sci. 336, 285 (2009)

    Article  CAS  Google Scholar 

  35. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Article  CAS  Google Scholar 

  36. N. Husing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)

    Article  CAS  Google Scholar 

  37. J. Fricke, Sci. Am. 256, 92 (1988)

    Article  Google Scholar 

  38. G.D. Sorarù, G. D’Andrea, R. Campostrini, F. Babonneau, J. Mater. Chem. 5, 1363 (1995)

    Article  Google Scholar 

  39. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)

    Article  CAS  Google Scholar 

  40. N. Husing, U. Schubert, K. Misof, P. Fratzl, Chem. Mater. 10, 3024 (1998)

    Article  Google Scholar 

  41. G.W. Scherer, D.M. Smith, X. Qui, J.M. Anderson, J. Non-Cryst. Solids 186, 316 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial contribution from Provincia Autonoma di Trento under the project NAOMI and the European Community, through a Marie Curie Research and Training Network “PolyCerNet” (http://www.ing.unitn.it/~soraru//), MRTN-CT-019601. Authors also thank Prof. Riccardo Ceccato for BET, Dr. Emmanuela Collone for 29Si MAS NMR measurements and Dr. Claudio Della Volpe for contact angle measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Aravind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aravind, P.R., Soraru, G.D. High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying. J Porous Mater 18, 159–165 (2011). https://doi.org/10.1007/s10934-010-9366-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9366-4

Keywords

Navigation