Skip to main content
Log in

Adsorbent layer for adsorption heat pump prepared with the surface-modified ferroaluminophosphate particles and inorganic silica binder

  • Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we prepared an adsorbent layer for adsorption heat pump by using ferroaluminophosphate (FAPO) particles and inorganic silica binder and characterized the physical properties thereof. We tried two ideas in preparing the adsorbent layer: dual precursor for binder and surface modification of the FAPO particles. The inorganic silica binder was prepared through a sol–gel process by using tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) as the dual precursor. The surface modification by TEOS molecules on the FAPO particles was done to promote the reactivity between particles and binder. The surface modification to form monolayer of silane was carefully done in a hydrophobic solvent, cyclohexane, preventing the supply of water molecules into the solution. As a result, both the use of dual precursor binder and the surface modification effectively improved the mechanical stability of the layer as shown by higher resistance to mechanical vibration. It was analyzed that the addition of MTES served to enhance the mechanical stability of the adsorbent layer by providing the flexible element, Si–C bonding, in the rigid inorganic matrix. To explain the microstructure analysis by SEM and TEM, and the zeta potential measurement, we proposed a surface reaction model comprising the formation of very thin layer of surface silanol on FAPO particles enhancing the reactivity between the particle and the binder. Both the dual precursor and the surface modification produced no noticeable detrimental effect on the key properties such as water vapor adsorption and thermal conductivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Demir H, Mobedi M, Ülkü S (2008) A review on adsorption heat pump: problems and solutions. Renew Sustain Energy Rev 12:2381–2403. doi:10.1016/j.rser.2007.06.005

    Article  Google Scholar 

  2. Wu W, Wang B, Shi W, Li X (2014) Absorption heating technologies: a review and perspective. Appl Energy 130:51–71. doi:10.1016/j.apenergy.2014.05.027

    Article  Google Scholar 

  3. Aristov YI (2013) Challenging offers of material science for adsorption heat transformation: a review. Appl Therm Eng 50:1610–1618. doi:10.1016/j.applthermaleng.2011.09.003

    Article  Google Scholar 

  4. Anyanwu EE (2003) Review of solid adsorption solar refrigerator I: an overview of the refrigeration cycle. Energy Convers Manag 44:301–312. doi:10.1016/S0196-8904(02)00038-9

    Article  Google Scholar 

  5. Wang SG, Wang RZ, Li XR (2005) Research and development of consolidated adsorbent for adsorption systems. Renew Energy 30:1425–1441. doi:10.1016/j.renene.2004.10.012

    Article  Google Scholar 

  6. Chan CW, Ling-Chin J, Roskilly AP (2013) A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation. Appl Therm Eng 50:1257–1273. doi:10.1016/j.applthermaleng.2012.06.041

    Article  Google Scholar 

  7. Saini VK, Pinto ML, Pires J (2011) Characterization of hierarchical porosity in novel composite monoliths with adsorption studies. Colloids Surf A Physicochem Eng Asp 373:158–166. doi:10.1016/j.colsurfa.2010.10.047

    Article  Google Scholar 

  8. Freni A, Frazzica A, Dawoud B et al (2013) Adsorbent coatings for heat pumping applications: verification of hydrothermal and mechanical stabilities. Appl Therm Eng 50:1658–1663. doi:10.1016/j.applthermaleng.2011.07.010

    Article  Google Scholar 

  9. Bonaccorsi L, Calabrese L, Freni A et al (2013) Zeolites direct synthesis on heat exchangers for adsorption heat pumps. Appl Therm Eng 50:1590–1595. doi:10.1016/j.applthermaleng.2011.10.028

    Article  Google Scholar 

  10. Vasta S, Giacoppo G, Barbera O et al (2014) Innovative zeolite coatings on graphite plates for advanced adsorbers. Appl Therm Eng 72:153–159. doi:10.1016/j.applthermaleng.2014.04.079

    Article  Google Scholar 

  11. Negishi H, Miyamoto A, Endo A (2013) Preparation of thick mesoporous silica coating by electrophoretic deposition with binder addition and its water vapor adsorption–desorption properties. Microporous Mesoporous Mater 180:250–256. doi:10.1016/j.micromeso.2013.06.040

    Article  Google Scholar 

  12. Freni A, Russo F, Vasta S et al (2007) An advanced solid sorption chiller using SWS-1L. Appl Therm Eng 27:2200–2204. doi:10.1016/j.applthermaleng.2005.07.023

    Article  Google Scholar 

  13. Dawoud B (2013) Water vapor adsorption kinetics on small and full scale zeolite coated adsorbers: a comparison. Appl Therm Eng 50:1645–1651. doi:10.1016/j.applthermaleng.2011.07.013

    Article  Google Scholar 

  14. Atakan A, Fueldner G, Munz G et al (2013) Adsorption kinetics and isotherms of zeolite coatings directly crystallized on fibrous plates for heat pump applications. Appl Therm Eng 58:273–280. doi:10.1016/j.applthermaleng.2013.04.037

    Article  Google Scholar 

  15. Sterte J, Mintova S, Zhang G, Schoeman BJ (1997) Thin molecular sieve films on noble metal substrates. Zeolites 18:387–390. doi:10.1016/S0144-2449(97)00032-8

    Article  Google Scholar 

  16. Bonaccorsi L, Bruzzaniti P, Calabrese L et al (2013) Synthesis of SAPO-34 on graphite foams for adsorber heat exchangers. Appl Therm Eng 61:848–852. doi:10.1016/j.applthermaleng.2013.04.053

    Article  Google Scholar 

  17. Freni A, Bonaccorsi L, Calabrese L et al (2015) SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Appl Therm Eng 82:1–7. doi:10.1016/j.applthermaleng.2015.02.052

    Article  Google Scholar 

  18. Azizi T, Touihri AE, Ben Karoui M, Gharbi R (2016) Comparative study between dye-synthesized solar cells prepared by electrophoretic and doctor blade techniques. Optik (Stuttg) 127:4400–4404. doi:10.1016/j.ijleo.2016.01.191

    Article  Google Scholar 

  19. Lin RY, Chen BS, Chen GL et al (2009) Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption. J Membr Sci 326:117–129. doi:10.1016/j.memsci.2008.09.038

    Article  Google Scholar 

  20. Kummer H, Füldner G, Henninger SK (2015) Versatile siloxane based adsorbent coatings for fast water adsorption processes in thermally driven chillers and heat pumps. Appl Therm Eng 85:1–8. doi:10.1016/j.applthermaleng.2015.03.042

    Article  Google Scholar 

  21. Frazzica A, Füldner G, Sapienza A et al (2014) Experimental and theoretical analysis of the kinetic performance of an adsorbent coating composition for use in adsorption chillers and heat pumps. Appl Therm Eng 73:1022–1031. doi:10.1016/j.applthermaleng.2014.09.004

    Article  Google Scholar 

  22. Li A, Thu K, Bin IsmailA et al (2016) Performance of adsorbent-embedded heat exchangers using binder-coating method. Int J Heat Mass Transf 92:149–157. doi:10.1016/j.ijheatmasstransfer.2015.08.097

    Article  Google Scholar 

  23. Nadargi DY, Latthe SS, Hirashima H, Rao AV (2009) Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater 117:617–626. doi:10.1016/j.micromeso.2008.08.025

    Article  Google Scholar 

  24. Kim H, Hwang T (2012) Corrosion protection enhancement effect by mixed silica nanoparticles of different sizes incorporated in a sol–gel silica film. J Sol-Gel Sci Technol 63:563–568. doi:10.1007/s10971-012-2820-9

    Article  Google Scholar 

  25. Brinker CJ, Hurd AJ, Schunk PR et al (1992) Review of sol–gel thin film formation. J Non Cryst Solids 147–148:424–436. doi:10.1016/S0022-3093(05)80653-2

    Article  Google Scholar 

  26. Zheng X, Wang RZ, Ge TS, Hu LM (2015) Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems. Energy 93:88–94. doi:10.1016/j.energy.2015.09.024

    Article  Google Scholar 

  27. Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198. doi:10.1021/cr60234a002

    Article  Google Scholar 

  28. Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker Inc., New York. doi:10.1201/9780585418049

    Book  Google Scholar 

  29. Kittaka S, Morimoto T (1980) Isoelectric point of metal oxides and binary metal oxides having spinel structure. J Colloid Interface Sci 75:398–403. doi:10.1016/0021-9797(80)90464-6

    Article  Google Scholar 

  30. Kuzniatsova T, Kim Y, Shqau K et al (2007) Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater 103:102–107. doi:10.1016/j.micromeso.2007.01.042

    Article  Google Scholar 

  31. Miura T, Miyake N, Tanabe K, Yoshinari M (2011) Change in zeta potential with physicochemical treatment of surface of anatase-form titania particles. J Oral Tissue Eng 9:64–70

    Google Scholar 

  32. Karakaş F, Çelik MS (2013) Mechanism of TiO2 stabilization by low molecular weight NaPAA in reference to water-borne paint suspensions. Colloids Surf A Physicochem Eng Asp 434:185–193. doi:10.1016/j.colsurfa.2013.05.051

    Article  Google Scholar 

  33. Li LC, Tian Y (2002) Zeta potential. Encycl Pharm Technol 3020–3031:8–11. doi:10.1351/goldbook

    Google Scholar 

  34. Innocenzi P, Abdirashid MO, Guglielmi M (1994) Structure and properties of sol–gel coatings from methyltriethoxysilane and tetraethoxysilane. J Sol-Gel Sci Technol 3:47–55. doi:10.1007/BF00490148

    Article  Google Scholar 

  35. Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 81:2849–2852. doi:10.1111/j.1151-2916.1998.tb02705.x

    Article  Google Scholar 

  36. Kawai T, Tsutsumi K (1998) Reactivity of silanol groups on zeolite surfaces. Colloid Polym Sci 276:992–998. doi:10.1007/s003960050338

    Article  Google Scholar 

  37. Fadeev AY, Mccarthy TJ (1998) Surface modification of poly(ethylene terephthalate) to prepare surfaces with silica-like reactivity. Langmuir 14:5586–5593. doi:10.1021/la980512f

    Article  Google Scholar 

  38. Tanaka M, Sawaguchi T, Kuwahara M, Niwa O (2013) Surface modification of silicon oxide with trialkoxysilanes toward close-packed monolayer formation. Langmuir 29:6361–6368. doi:10.1021/la4009834

    Article  Google Scholar 

  39. AZoM.com (2016) Properties: silica–silicon dioxide (SiO2). http://www.azom.com/properties.aspx?ArticleID=1114

  40. Amils RI, Gallego JD, Sebastián JL et al (2016) Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements. Cryogenics (Guildf) 76:23–28. doi:10.1016/j.cryogenics.2016.03.001

    Article  Google Scholar 

  41. Shahil KMF, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867. doi:10.1021/nl203906r

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Energy Efficiency and Resources (No. 20122010100120) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea Government Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejin Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Cha, D.A., Hwang, YH. et al. Adsorbent layer for adsorption heat pump prepared with the surface-modified ferroaluminophosphate particles and inorganic silica binder. J Sol-Gel Sci Technol 80, 297–305 (2016). https://doi.org/10.1007/s10971-016-4132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4132-y

Keywords

Navigation