Skip to main content
Log in

Synthesis of titanium-containing helical silicates for catalytic oxidation of alkenes

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new series of titanium-containing helical silicates were prepared by doping of chiral sodium lactate in a sol–gel process. Characterizations revealed that the present titanium materials had good porosities, hexagonal symmetries, helical morphologies, as well as right-handed internal chiralities. Loading of chiral sodium lactate in preparation facilitated internal chiralities of synthetic products. In catalysis, the titanium materials showed moderate-to-excellent conversions, moderate-to-high stereoselectivities, and satisfactory recyclings for oxidation of aliphatic and aromatic alkenes by using solid oxidants such as iodobenzene diacetate and iodosylbenzene. Furthermore, both using ionic liquid as solvent and leaching of catalyst were studied. In general, titanium-containing chiral silicates were provided, and their applications in asymmetric catalysis were discussed too, which showed values on design of new efficient chiral catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy EF, Mallat T, Baiker A (2000) Catal Today 57:115–126

    Article  Google Scholar 

  2. Wang Z-M, Sang X-L, Che C-M, Chen J (2014) Tetrahedron Lett 55:1736–1739

    Article  Google Scholar 

  3. Sun C, Hu B, Liu Z (2013) Chem Eng J 232:96–103

    Article  Google Scholar 

  4. Jiang W, Gorden JD, Goldsmith CR (2013) Inorg Chem 52:5814–5823

    Article  Google Scholar 

  5. Pathan S, Patel A (2014) Chem Eng J 243:183–191

    Article  Google Scholar 

  6. Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA (2013) J Catal 298:61–69

    Article  Google Scholar 

  7. Zhou Q-L (2015) Angew Chem Int Ed 54:2–4

    Article  Google Scholar 

  8. Moliner M, Corma A (2012) Chem Mater 24:4371–4375

    Article  Google Scholar 

  9. Inagaki S, Takechi K, Kubota Y (2010) Chem Commun 46:2662–2664

    Article  Google Scholar 

  10. Serrano DP, Li H-X, Davis ME (1992) Chem Commun 28:745–747

    Article  Google Scholar 

  11. Díaz-Cabañas M-J, Villaescusa LA, Camblor MA (2000) Chem Commun 36:761–762

    Article  Google Scholar 

  12. Wu P, Tatsumi T, Komatsu T, Yashima T (2001) J Phys Chem B 105:2897–2905

    Article  Google Scholar 

  13. Sasaki M, Sato Y, Tsuboi Y, Inagaki S, Kubota Y (2014) ACS Catal 4:2653–2657

    Article  Google Scholar 

  14. Fernandes CI, Saraiva MS, Nunes TG, Vaz PD, Nunes CD (2014) J Catal 309:21–32

    Article  Google Scholar 

  15. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Nature 429:281–284

    Article  Google Scholar 

  16. Han Y, Zhao L, Ying JY (2007) Adv Mater 19:2454–2459

    Article  Google Scholar 

  17. Shelton RA, Arends IWCE, Brink GT, Dijksman A (2002) Acc Chem Res 35:774–781

    Article  Google Scholar 

  18. Zhou L, Wang W-G, Ge M-F (2012) J Phys Chem A 116:7959–7964

    Article  Google Scholar 

  19. Shi F, Zhang Q, Li D, Deng Y (2005) Chem Eur J 11:5279–5288

    Article  Google Scholar 

  20. Mazyar OA, Jennings GK, McCabe C (2009) Langmuir 25:5103–5110

    Article  Google Scholar 

  21. Piaggio P, Langham C, McMorn P, Bethell D, Bulman-Page PC, Hancock FE, Sly C, Hutchings GJ (2000) J Chem Soc Perkin Trans 2:143–148

    Article  Google Scholar 

  22. Li L, Li Y, Pang D, Liu F, Zheng A, Zhang G, Sun Y (2015) Tetrahedron 71:8096–8103

    Article  Google Scholar 

  23. Guo Z, Du Y, Chen Y, Ng S-C, Yang Y (2010) J Phys Chem C 114:14353–14361

    Article  Google Scholar 

  24. Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C (2008) J Catal 256:226–236

    Article  Google Scholar 

  25. Watcharakul N, Poompradub S, Prasassarakich P (2011) J Sol-Gel Sci Technol 58:407–418

    Article  Google Scholar 

  26. Palaniappan PLRM, Pramod KS (2011) Spectrachim Acta A 79:206–212

    Article  Google Scholar 

  27. Zhang J, Li L, Li Y, Zhang G, Zheng A, Zhang J, Sun Y (2015) Catal Lett 145:1148–1161

    Article  Google Scholar 

  28. Ahn K-H, Park Y-B, Park D-W (2003) Surf Coat Tech 171:198–204

    Article  Google Scholar 

  29. Lazar A, Sharma P, Singh AP (2013) Micropor Mesopor Mater 170:331–339

    Article  Google Scholar 

  30. Chen HL, Li SW, Wang YM (2015) J Mater Chem A 3:5889–5900

    Article  Google Scholar 

  31. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  Google Scholar 

  32. Hiyoshi N (2012) Appl Catal A Gen 419–420:164–169

    Article  Google Scholar 

  33. Sepehrian H, Khanchi AR, Rofouei MK, Husain SW (2006) J Iran Chem Soc 3:253–257

    Article  Google Scholar 

  34. Li Y, Zhao M, Wang J, Liu K, Cai C (2011) Langmuir 27:4848–4856

    Article  Google Scholar 

  35. Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, Descouts P, Grätzel M (2002) Langmuir 18:2582–2589

    Article  Google Scholar 

  36. Zhao Z-P, Li M-S, Zhang J-Y, Li H-N, Zhu P-P, Liu W-F (2012) Ind Eng Chem Res 51:9531–9539

    Article  Google Scholar 

  37. Pan Q, Ramanathan A, Snavely WK, Chaudhari RV, Subramaniam B (2013) Ind Eng Chem Res 52:15481–15487

    Article  Google Scholar 

  38. Li X, Shen Q, Zhang G, Zhang D, Zheng A, Guan F, Sun Y (2013) Catal Commun 41:126–131

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundamental Research Funds for the Central Universities (No. xjj2014005, Application of Porous Helical Materials in Catalytic Asymmetric Reactions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, B., Li, L. et al. Synthesis of titanium-containing helical silicates for catalytic oxidation of alkenes. J Sol-Gel Sci Technol 80, 451–461 (2016). https://doi.org/10.1007/s10971-016-4130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4130-0

Keywords

Navigation