Skip to main content
Log in

Chiral Mesoporous Silicates Immobilizing Titanium Dioxide for Catalytic Asymmetric Epoxidation of Alkenes

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Two kinds of titanium-containing silicates were prepared by doping of titanium salt and chiral additive in a sol-gel process, which were further modified by chiral sulfonyl chloride in order for catalytic asymmetric epoxidation of alkenes. These titanium-containing materials had good porosities, ordered pore size distributions, high titanium incorporation yields, ordered morphologies, as well as internal chiral configurations. Particularly, they contained a lot of titanium dioxide particles according to TEM. In catalysis, the titanium silicates showed good conversion of alkenes, satisfactory yields and e.e. values of epoxides. The chiral inducing synergy appeared between silicate matrix and attached ligand, which was significant for transformations of styrene and α-methylstyrene. Moreover, iodosylbenzene, tert-butyl hydroperoxide and hydrogen peroxide were all promising oxidants. In addition, the present titanium catalysts showed satisfactory recycling behaviors and chemical stabilities. This work would contribute to the design of efficient chiral catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li K, Valla J, Garcia-Martinez J (2014) ChemCatChem 6:46–66

    Article  CAS  Google Scholar 

  2. Chng LL, Earthodiyil N, Ying JY (2013) Acc Chem Res 46:1825–1837

    Article  CAS  Google Scholar 

  3. Crespo-Quesada M, Yarulin A, Jin M, Xia Y, Kiwi-Minker L (2011) J Am Chem Soc 133:12787–12794

    Article  CAS  Google Scholar 

  4. Hong H, Hu L, Li M, Zheng J, Sun X, Lu X, Cao X, Lu J, Gu H (2011) Chem Eur J 17:8726–8730

  5. Zhang X, Corma A (2008) Angew Chem Int Ed 47:4358–4361

    Article  Google Scholar 

  6. Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663–12676

    Article  CAS  Google Scholar 

  7. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  8. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  9. Zhang H, Wang YM, Zhang L, Gerritsen G, Abbenhuis HCL, van Santen RA, Li C (2008) J Catal 256:226–236

    Article  CAS  Google Scholar 

  10. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  11. Moliner M, Corma A (2012) Chem Mater 24:4371–4375

    Article  CAS  Google Scholar 

  12. Inagaki S, Takechi K, Kubota Y (2010) Chem Commun 46:2662–2664

    Article  CAS  Google Scholar 

  13. Serrano DP, Li H-X, Davis ME (1992) Chem Commun 28:745–747

    Article  Google Scholar 

  14. Díaz-Cabañas M-J, Villaescusa LA, Camblor MA (2000) Chem Commun 36:761–762

    Article  Google Scholar 

  15. Wu P, Tatsumi T, Komatsu T, Yashima T (2001) J Phys Chem B 105:2897–2905

    Article  CAS  Google Scholar 

  16. Sasaki M, Sato Y, Tsuboi Y, Inagaki S, Kubota Y (2014) ACS Catal 4:2653–2657

    Article  CAS  Google Scholar 

  17. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Nature 429:281–284

    Article  CAS  Google Scholar 

  18. Fernandes CI, Saraiva MS, Nunes TG, Vaz PD, Nunes CD (2014) J Catal 309:21–32

    Article  CAS  Google Scholar 

  19. Li L, Huang B, Li Y, Zhang G, Imam Z, Zheng A, Sun Y (2015) Catal Surv Asia 19:236–248

    Article  CAS  Google Scholar 

  20. Tsubogo T, Ishiwata T, Kobayashi S (2013) Angew Chem Int Ed 52:6590–6604

    Article  CAS  Google Scholar 

  21. Cho H, Katoh S, Sayama S, Murakami K, Nakanishi H, Kajimoto Y, Ueno H, Kawasaki H, Aisaka K, Uchida I (1996) J Med Chem 39:3797–3805

    Article  CAS  Google Scholar 

  22. Katsuki T, Sharpless KB (1980) J Am Chem Soc 102:5974–5976

    Article  CAS  Google Scholar 

  23. Jacobsen EN, Zhang W, Güler ML (1991) J Am Chem Soc 113:6703–6704

    Article  CAS  Google Scholar 

  24. Song CE, Lee S (2002) Chem Rev 102:3495–3524

    Article  CAS  Google Scholar 

  25. Canali L, Cowan E, Deleuze H, Gibson CL, Sherrington DC (2000) J Chem Soc Perkin Trans 1 2055–2066

    Article  Google Scholar 

  26. Piaggio P, Langham C, McMorn P, Bethell D, Bulman-Page PC, Hancock FE, Sly C, Hutchings GJ (2000) J Chem Soc Perkin Trans 2 143–148

    Article  Google Scholar 

  27. Guo Z, Du Y, Chen Y, Ng S-C, Yang Y (2010) J Phys Chem C 114:14353–14361

    Article  CAS  Google Scholar 

  28. Wang S, Zhang Z, Liu B, Li J (2013) Catal Sci Technol 3:2104–2112

    Article  CAS  Google Scholar 

  29. Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2013) Appl Catal B 142–143:205–213

    Article  Google Scholar 

  30. Lazar A, Sharma P, Singh AP (2013) Microporous Mesoporous Mater 170:331–339

    Article  CAS  Google Scholar 

  31. Na K, Jo C, Kim J, Ahn W-S, Ryoo R (2011) ACS Catal 1:901–907

    Article  CAS  Google Scholar 

  32. Yu K, Gu Z, Ji R, Lou L-L, Ding F, Zhang C, Liu S (2007) J Catal 252:312–320

    Article  CAS  Google Scholar 

  33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  34. Hiyoshi N (2012) Appl Catal A 419–420:164–169

    Article  Google Scholar 

  35. Nethravathi C, Rajamathi CR, Rajamathi M, Wang X, Gautam UK, Golberg D, Bando Y (2014) ACS Nano 8:2755–2765

    Article  CAS  Google Scholar 

  36. Fu R, Yoshizawa N, Dresselhause MS, Dresselhause G, Satcher JH Jr, Baumann TF (2002) Langmuir 18:10100–10104

    Article  CAS  Google Scholar 

  37. Haselbach LM, Ma S (2008) Environ Sci Technol 42:5329–5334

    Article  CAS  Google Scholar 

  38. Li Y, Zhao M, Wang J, Liu K, Cai C (2011) Langmuir 27:4848–4856

    Article  CAS  Google Scholar 

  39. Magni E, Somorjai GA (1996) J Phys Chem 100:14786–14793

    Article  CAS  Google Scholar 

  40. Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, Descouts P, Grätzel M (2002) Langmuir 18:2582–2589

    Article  CAS  Google Scholar 

  41. Fukuda M, Tsunoji N, Yagenji Y, Ide Y, Hayakawa S, Sadakane M, Sano T (2015) J Mater Chem A 3:15280–15291

    Article  CAS  Google Scholar 

  42. Luo PF, Kuwana T (1996) Anal Chem 68:3330–3337

    Article  CAS  Google Scholar 

  43. Choi M, Heo W, Kleitz F, Ryoo R (2003) Chem Commun 12:1340–1341

    Article  Google Scholar 

  44. Li L, Li X, Fan C, Huang B, Li Y, Zheng A, Sun Y (2016) Reac Kinet Mech Cat 117:715–728

    Article  CAS  Google Scholar 

  45. Zhu L, Zhang J, Wang L, Wu Q, Bian C, Pan S, Meng X, Xiao F-S (2015) J Mater Chem A 3:14093–14095

    Article  CAS  Google Scholar 

  46. Lane BS, Burgess K (2003) Chem Rev 103:2457–2473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundamental Research Funds for the Central Universities (No. xjj2014005, Application of Porous Helical Materials in Catalytic Asymmetric Reactions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Jia, X., Li, Y. et al. Chiral Mesoporous Silicates Immobilizing Titanium Dioxide for Catalytic Asymmetric Epoxidation of Alkenes. Catal Surv Asia 21, 13–27 (2017). https://doi.org/10.1007/s10563-016-9222-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9222-x

Keywords

Navigation