Skip to main content
Log in

Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We propose and demonstrate the incorporation of porous microstructures on indium-doped zinc oxide (IZO) electron selective layer in inverted organic photovoltaics (OPV). Porosity was induced in the IZO layer with the addition of polyethylene glycol (PEG) organic template at the optimal IZO/PEG ratio of 4:1. When compared to the OPV device with non-porous IZO, the device employing porous IZO showed a 16 % improvement in current density and a 13 % improvement in efficiency. This is primarily due to the increased light scattering as substantiated by the haze factor studies. This PEG assisted method of introducing microporous structure is therefore shown to be compatible with the doped interlayer and is thus a portable method of enhancing light scattering in OPV devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang C, Li T, Hou L, Zhang X (2011) Research on the Characteristics of Organic Solar Cells. J Phys: Conf Ser 276(1):012169

    Google Scholar 

  2. Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583

    Article  Google Scholar 

  3. Forrest SR (2005) The limits to organic photovoltaic cell efficiency. MRS Bull 30:28–32

    Article  Google Scholar 

  4. Dang MT, Wantz G, Bejbouji H, Urien M, Dautel OJ, Vignau L, Hirsch L (2011) Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent. Sol Energy Mater Sol Cells 95(12):3408–3418. doi:10.1016/j.solmat.2011.07.039

    Article  Google Scholar 

  5. Servaites JD, Ratner MA, Marks TJ (2011) Organic solar cells: a new look at traditional models. Energy Environ Sci 4(11):4410–4422. doi:10.1039/c1ee01663f

    Article  Google Scholar 

  6. Shrotriya V, Gang L, Yan Y, Moriarty T, Emery K, Yang Y (2006) Accurate measurement and characterization of organic solar cells. Adv Funct Mater 16:2016–2023

    Article  Google Scholar 

  7. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6 (9):591–595. http://www.nature.com/nphoton/journal/v6/n9/abs/nphoton.2012.190.html#supplementary-information

  8. Yan Y, Jianhui H, Zheng X, Gang L, Yang Y (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789

    Article  Google Scholar 

  9. Sun XW, Zhao DW, Ke L, Kyaw AKK, Lo GQ, Kwong DL (2010) Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer. Appl Phys Lett 97:053303

    Article  Google Scholar 

  10. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302. doi:10.1038/nphoton.2009.69

    Article  Google Scholar 

  11. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39(7):2354–2371. doi:10.1039/b914956m

    Article  Google Scholar 

  12. Chizu S, Yoshiaki T, Takeshi Y, Makoto K, Shuji D (2014) Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater 15(3):034203

    Article  Google Scholar 

  13. Lin R, Wright M, Uddin A (2013) Effects of solvent additive on inverted structure PCPDTBT: PC71BM bulk heterojunction organic solar cells. Physica Status Solidi 210(9):1785–1790. doi:10.1002/pssa.201329195

    Google Scholar 

  14. Ahmad R, Arora V, Srivastava R, Sapra S, Kamalasanan MN (2013) Enhanced performance of organic photovoltaic devices by incorporation of tetrapod-shaped CdSe nanocrystals in polymer–fullerene systems. Physica Status Solidi 210(4):785–790. doi:10.1002/pssa.201228347

    Article  Google Scholar 

  15. Lai T-H, Tsang S-W, Manders JR, Chen S, So F (2013) Properties of interlayer for organic photovoltaics. Mater Today 16(11):424–432. doi:10.1016/j.mattod.2013.10.001

    Article  Google Scholar 

  16. Chen D, Zhang C, Wei W, Wang Z, Heng T, Tang S, Han G, Zhang J, Hao Y (2015) Stability of inverted organic solar cells with low-temperature ZnO buffer layer processed from aqueous solution. Physica Status Solidi 212(10):2262–2270. doi:10.1002/pssa.201532207

    Article  Google Scholar 

  17. Liu ZF, Jin ZG, Li W, Qiu JJ (2005) Preparation of ZnO porous thin films by sol-gel method using PEG template. Mater Lett 59(28):3620–3625. doi:10.1016/j.matlet.2005.06.064

    Article  Google Scholar 

  18. Alam MJ, Cameron DC (2001) Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol-gel process. J Vac Sci Technol 19(4):1642–1646. doi:10.1116/1.1340659

    Article  Google Scholar 

  19. Fathollahi V, Amini MM (2001) Sol–gel preparation of highly oriented gallium-doped zinc oxide thin films. Mater Lett 50(4):235–239. doi:10.1016/S0167-577X(01)00231-2

    Article  Google Scholar 

  20. Savva A, Choulis SA (2013) Cesium-doped zinc oxide as electron selective contact in inverted organic photovoltaics. Appl Phys Lett 102(23):233301–233305

    Article  Google Scholar 

  21. Murdoch GB, Hinds S, Sargent EH, Tsang SW, Mordoukhovski L, Lu ZH (2009) Aluminum doped zinc oxide for organic photovoltaics. Appl Phys Lett 94(21):213301. doi:10.1063/1.3142423

    Article  Google Scholar 

  22. Kyaw AKK, Xiaowei S, De Wei Z, Swee Tiam T, Divayana Y, Demir HV (2010) Improved inverted organic solar cells with a sol–gel derived indium-doped zinc oxide buffer layer. IEEE J Sel Top Quantum Electron 16(6):1700–1706. doi:10.1109/JSTQE.2009.2039200

    Article  Google Scholar 

  23. Hu ZY, Zhang JJ, Liu Y, Li YN, Zhang XD, Zhao Y (2011) Efficiency enhancement of inverted organic photovoltaic devices with ZnO nanopillars fabricated on FTO glass substrates. Synth Met 161(19–20):2174–2178. doi:10.1016/j.synthmet.2011.08.025

    Article  Google Scholar 

  24. Ju XH, Feng W, Varutt KC, Hori TS, Fujii AH, Ozaki MN (2008) Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices. Nanotechnology. doi:10.1088/0957-4484/19/43/435706

    Google Scholar 

  25. Olson DC, Yun-Ju L, White MS, Kopidakis N, Shaheen SE, Ginley DS, Voigt JA, Hsu JWP (2007) Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J Phys Chem C 111:16640–16645

    Article  Google Scholar 

  26. Takanezawa K, Hirota K, Wei QS, Tajima K, Hashimoto K (2007) Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J Phys Chem C 111(19):7218–7223. doi:10.1021/jp071418n

    Article  Google Scholar 

  27. Zhifeng L, Zhengguo J, Jijun Q, Xiaoxin L, Weibing W, Wei L (2006) Preparation and characteristics of ordered porous ZnO films by a electrodeposition method using PS array templates. Semicond Sci Technol 21(1):60

    Article  Google Scholar 

  28. Liu Z, Jin Z, Li W, Qiu J, Zhao J, Liu X (2006) Synthesis of PS colloidal crystal templates and ordered ZnO porous thin films by dip-drawing method. Appl Surf Sci 252(14):5002–5009. doi:10.1016/j.apsusc.2005.07.018

    Article  Google Scholar 

  29. Wang L, Zheng Y, Li X, Dong W, Tang W, Chen B, Li C, Li X, Zhang T, Xu W (2011) Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films 519(16):5673–5678. doi:10.1016/j.tsf.2011.02.070

    Article  Google Scholar 

  30. Rakibuddin M, Ananthakrishnan R (2016) Novel nano coordination polymer based synthesis of porous ZnO hexagonal nanodisk for higher gas sorption and photocatalytic activities. Appl Surf Sci 362:265–273. doi:10.1016/j.apsusc.2015.11.206

    Article  Google Scholar 

  31. Li D, Huang F, Ding S (2011) Sol–gel preparation and characterization of nanoporous ZnO/SiO2 coatings with broadband antireflection properties. Appl Surf Sci 257(23):9752–9756. doi:10.1016/j.apsusc.2011.05.126

    Article  Google Scholar 

  32. Zhu Y, Wang Y, Duan G, Zhang H, Li Y, Liu G, Xu L, Cai W (2015) In situ growth of porous ZnO nanosheet-built network film as high-performance gas sensor. Sens Actuators B Chem 221:350–356. doi:10.1016/j.snb.2015.06.115

    Article  Google Scholar 

  33. Boucle J, Snaith HJ, Greenham NC (2010) Simple approach to hybrid polymer/porous metal oxide solar cells from solution-processed ZnO nanocrystals. J Phys Chem C 114(8):3664–3674. doi:10.1021/jp909376f

    Article  Google Scholar 

  34. Nirmal A, Kyaw AKK, Sun XW, Demir HV (2014) Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics. Opt Express 22(S6):A1412–A1421. doi:10.1364/OE.22.0A1412

    Article  Google Scholar 

  35. Cho C, Kim H, Jeong S, Baek S-W, Seo J-W, Han D, Kim K, Park Y, Yoo S, Lee J-Y (2013) Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Sol Energy Mater Sol Cells 115:36–41. doi:10.1016/j.solmat.2013.03.014

    Article  Google Scholar 

  36. Chen L-M, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering - achieving high performance polymer photovoltaic devices. J Mater Chem 20(13):2575–2598. doi:10.1039/B925382C

    Article  Google Scholar 

  37. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl Phys Lett 91(15):152111. doi:10.1063/1.2799257

    Article  Google Scholar 

  38. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93(22):221107. doi:10.1063/1.3039076

    Article  Google Scholar 

  39. Kyaw AKK, Wang Y, Zhao DW, Huang ZH, Zeng XT, Sun XW (2011) The properties of sol–gel processed indium-doped zinc oxide semiconductor film and its application in organic solar cells. Physica Status Solidi 208(11):2635–2642. doi:10.1002/pssa.201127263

    Article  Google Scholar 

  40. Hsiao YS, Chen CP, Chao CH, Whang WT (2009) All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide. Org Electron 10(4):551–561. doi:10.1016/j.orgel.2009.01.012

    Article  Google Scholar 

  41. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512. doi:10.1039/B921624C

    Article  Google Scholar 

  42. Dupont SR, Voroshazi E, Heremans P, Dauskardt RH (2013) Adhesion properties of inverted polymer solarcells: processing and film structure parameters. Org Electron 14(5):1262–1270. doi:10.1016/j.orgel.2013.02.022

    Article  Google Scholar 

  43. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93:221107

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore National Research Foundation under Grant Nos. NRF-CRP-6-2010-2 and NRF-RF-2009-09, the Singapore Agency for Science, Technology and Research (A*STAR) SERC under Grant Nos. 092 101 0057 and 112 120 2009, the New Initiative Fund and Joint Singapore-German Research Projects from Nanyang Technological University, A*STAR SERC TSRP Grant (Grant #102 170 0137) and IMRE exploratory Project (Grant # IMRE/14-1C0247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmi Volkan Demir.

Appendix

Appendix

OPVs with IZO electron selective layers spin-coated at various speeds and annealed at a range of temperatures were analyzed (Tables 3, 4).

Table 3 Device parameters of OPV devices with IZO electron selective layer at different spin speeds
Table 4 Device parameters of OPV devices with IZO electron selective layer annealed at different temperatures

From these optimization studies, IZO layer processed at spin-coating speed of 2500 rpm and annealing temperature of 150 °C was found to exhibit the best performance. Investigations proved that slower active layer spin speeds (800–1000 rpm) resulted in the better performance of porous IZO devices (Table 5).

Table 5 Device parameters of OPV devices with porous IZO electron selective layer with active layer spin-coated at different spin speeds

SEM images of porous ZnO from our previous studies (Fig. 8) [34]. The degree of porosity for porous ZnO with ZnO/PEG ratio of 4:1 is higher when compared with porous IZO with IZO/PEG ratio of 4:1(Fig. 3b).

Fig. 8
figure 8

SEM images of porous ZnO layer (scale bar is 20 µm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmal, A., Kyaw, A.K.K., Sun, X. et al. Demonstration of the portability of porous microstructure architecture to indium-doped ZnO electron selective layer for enhanced light scattering in inverted organic photovoltaics. J Sol-Gel Sci Technol 78, 613–620 (2016). https://doi.org/10.1007/s10971-016-3999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3999-y

Keywords

Navigation