Skip to main content
Log in

ZnO@ZIF-8 inverse opal structure photoanode for efficient CdS/CdSe co-sensitized quantum dot solar cells

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoanodes in quantum-dot-sensitized solar cells are essential to the process of light collection and charge transfer. In this paper, three-dimensional inverse opal (ZnO@ZIF-8 3D IO) photoanode is fabricated via a self-assembled opal template method. The synthesized photoanode has completely connected pores with extended diameter, thus promoting the permeability of QDs and electrolyte. Meanwhile, the light trapping ability and charge transfer process can be enhanced due to the slow photon and multi-scattering effect of the regularly interconnected macroporous array structure. ZIF-8 shell coated on the surface of ZnO IO not only provides high porosity but also serves as a protective passivation layer to reduce the carriers recombination occurred at the interfacial. In order to investigate the charge transport mechanism of ZnO @ ZIF-8 IO, cascaded CdS/CdSe quantum dots were used as sensitizers. Benefiting from the IO structure and ZIF-8 modification, the photoelectric conversion efficiency of solar cells based on ZnO@ZIF-8 IO can reach 1.75% (1.71 ± 0.04%), almost twice of that of the solar cells based on ZnO IO photoanode (0.81 ± 0.05%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Boro B, Gogoi B, Rajbongshi B, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270

    Article  CAS  Google Scholar 

  2. Ge J, Li W, He X, Chen H, Fang W, Du X, Li Y, Zhao L (2020) Hybrid CdSe/CsPbI3 quantum dots for interface engineering in perovskite solar cells. Sustain Energy Fuels. https://doi.org/10.1039/C9SE01205B

    Article  Google Scholar 

  3. Singh N, Salam Z, Subasri A, Sivasankar N, Subramania A (2018) Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Solar Energy Mater Solar Cells 179:417–426

    Article  CAS  Google Scholar 

  4. Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X (2017) Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12. J Phys Chem Lett 8:559–564

    Article  CAS  Google Scholar 

  5. Muthalif MPA, Sunesh CD, Choe Y (2018) Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. J Photochem Photobiol Chem 358:177–185

    Article  Google Scholar 

  6. Wang W, Feng W, Du J, Xue W, Zhang L, Zhao L, Li Y, Zhong X (2018) Cosensitized quantum dot solar cells with conversion efficiency over 12. Adv Mater 30:1705746. https://doi.org/10.1002/adma.201705746

    Article  CAS  Google Scholar 

  7. Margraf JT, Ruland A, Sgobba V, Guldi DM, Clark T (2013) Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. Langmuir 29:2434–2438

    Article  CAS  Google Scholar 

  8. Wang X, Ran L, Dong L, Dong Y, Wang C, Xiong Y (2016) Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. Nano Energy 24:87–93

    Article  CAS  Google Scholar 

  9. Wang W, Dong J, Ye X, Li Y, Ma Y, Qi L (2016) Heterostructured TiO2 Nanorod@Nanobowl arrays for efficient photoelectrochemical water splitting. Small 12:1469–1478

    Article  CAS  Google Scholar 

  10. Mehmood U, Harrabi K, Hussein IA, Ahmed S (2017) Enhanced photovoltaic performance of dye-sensitized solar cells using TiO2-graphene microplatelets hybrid photoanode. IEEE J Photovolt 6:196–201

    Article  Google Scholar 

  11. Li Y, Li W, Zhao L, Ge J, He X, Fang W, Chen H (2019) Constructing micro-flower modified porous TiO2 photoanode for efficient quantum dots sensitized solar cells. J Photochem Photobiol Chem 375:77–84

    Article  CAS  Google Scholar 

  12. Zhou S, Tang R, Li H, Fu L, Li B, Yin L (2019) Fluorescence resonance energy transfer effect enhanced high performance of Si quantum dots/CsPbBr3 inverse opal heterostructure perovskite solar cells. J Power Sources 439:227065. https://doi.org/10.1016/j.jpowsour.2019.227065

    Article  CAS  Google Scholar 

  13. Luo D, Chen Q, Qiu Y, Liu B, Zhang M (2019) Carbon dots-decorated Bi2WO6 in an inverse opal film as a photoanode for photoelectrochemical solar energy conversion under visible-light irradiation. Materials 12:1713. https://doi.org/10.3390/ma12101713

    Article  CAS  Google Scholar 

  14. Zhu Y, Tong X, Song H, Wang Y, Qiao Z, Qiu D, Huang J, Lu Z (2018) CsPbBr 3 perovskite quantum dots/ZnO inverse opal electrodes: photoelectrochemical sensing for dihydronicotinamide adenine dinucleotide under visible irradiation. Dalton Trans 47:10057–10062

    Article  CAS  Google Scholar 

  15. Hori K, Zhang Y, Tusamalee P, Nakazawa N, Yoshihara Y, Wang R, Toyoda T, Hayase S, Shen Q (2018) Interface passivation effects on the photovoltaic performance of quantum dot sensitized inverse opal TiO2 solar cells. Nanomaterials 8:460. https://doi.org/10.3390/nano8070460

    Article  CAS  Google Scholar 

  16. Eftekhari E, Broisson P, Nikhil A, Wu Z, Cole IS, Li X, Zhao D, Li Q (2017) Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. J Mater Chem A 5:12803–12810

    Article  CAS  Google Scholar 

  17. Liu J, Yao M, Shen L (2019) Third generation photovoltaic cells based on photonic crystals. J Mater Chem C 7:3121–3145

    Article  CAS  Google Scholar 

  18. Oh Y, Yang W, Tan J, Lee H, Park J, Moon J (2019) Boosting visible light harvesting in p-type ternary oxides for solar-to-hydrogen conversion using inverse opal structure. Adv Funct Mater 29:1900194. https://doi.org/10.1002/adfm.201900194

    Article  CAS  Google Scholar 

  19. Zhang H, Zhou W, Yang Y, Cheng C (2017) 3D WO3/BiVO4/cobalt phosphate composites inverse opal photoanode for efficient photoelectrochemical water splitting. Small 13:1603840. https://doi.org/10.1002/smll.201603840

    Article  CAS  Google Scholar 

  20. Lin X, Aumaitre C, Kervella Y, Lapertot G, Rodríguez-Seco C, Palomares E, Demadrille R, Reiss P (2018) Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode. Adv Funct Mater 28:1706291. https://doi.org/10.1002/adfm.201706291

    Article  CAS  Google Scholar 

  21. Wang Z, Li X, Ling H, Tan CK, Yeo LP, Grimsdale AC, Aiy T (2018) 3D FTO/FTO-Nanocrystal/TiO2 composite inverse opal photoanode for efficient photoelectrochemical water splitting. Small 14:1800395. https://doi.org/10.1002/smll.201800395

    Article  CAS  Google Scholar 

  22. Qi L, Low ZX, Yi F, Leong S, Zhong Z, Yao J, Hapgood K, Wang H (2014) Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous Mesoporous Mater 194:1–7

    Article  Google Scholar 

  23. Kilic B, Turkdogan S (2017) Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Mater Lett 193:195–198

    Article  CAS  Google Scholar 

  24. Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim SK, Prabakar K, Kim HJ (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446

    Article  Google Scholar 

  25. Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997

    Article  CAS  Google Scholar 

  26. Feng HL, Wu WQ, Rao HS, Li LB, Kuang DB, Su CY (2015) Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J Mater Chem A 3:14826–14832

    Article  CAS  Google Scholar 

  27. Li Y, Pang A, Wang C, Wei M (2011) Metal-organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J Mater Chem 21:17259–17264

    Article  CAS  Google Scholar 

  28. Chung HY, Lin CH, Prabu S, Wang HW (2018) Perovskite solar cells using TiO2 layers coated with metal-organic framework material ZIF-8. J Chin Chem Soc 65:1476–1481

    Article  CAS  Google Scholar 

  29. Gu A, Xiang W, Wang T, Gu S, Zhao X (2017) Enhance photovoltaic performance of tris(2,2′-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Sol Energy 147:126–132

    Article  CAS  Google Scholar 

  30. Zhang M, Shang Q, Wan Y, Cheng Q, Liao G, Pan Z (2019) Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl Catal B Environ 241:149–158

    Article  CAS  Google Scholar 

  31. Tian P, Shen K, Chen J, Fan T, Fang R, Li Y (2018) Self-templated formation of Pt@ ZIF-8/SiO2 composite with 3D-ordered macropores and size-selective catalytic properties. Small Methods 2:1800219. https://doi.org/10.1002/smtd.201800219

    Article  CAS  Google Scholar 

  32. Li Y, Chen C, Sun X, Dou J, Wei M (2015) Metal-organic frameworks at interfaces in dye-sensitized solar cells. Chemsuschem 7:2469–2472

    Article  Google Scholar 

  33. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210

    Article  CAS  Google Scholar 

  34. Karuturi SK, Liu L, Su LT, Chutinan A, Kherani NP, Chan TK, Osipowicz T, Yoong Tok AI (2011) Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals. Nanoscale 3:4951–4954

    Article  CAS  Google Scholar 

  35. Tsai CW, Langner EHG (2016) The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater 221:8–13

    Article  CAS  Google Scholar 

  36. Ge J, Li W, Zhao L, Li Y, He X, Fang W, Chen H, Zhang F (2019) Constructing cellular network TiO2 photoanode for simultaneous regulation of charge transport and light harvesting properties of quantum dots sensitized solar cells. Ceram Int 45:3715–3722

    Article  CAS  Google Scholar 

  37. Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q (2017) Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35:17–25

    Article  CAS  Google Scholar 

  38. Zhou S, Tang R, Yin L (2017) Slow-photon-effect-induced photoelectrical-conversion efficiency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar cells. Adv Mater 29:1703682. https://doi.org/10.1002/adma.201703682

    Article  CAS  Google Scholar 

  39. Lee L (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688

    Article  Google Scholar 

  40. Hwang I, Yong K (2015) Counter electrodes for quantum-dot-sensitized solar cells. Chemelectrochem 2:634–653

    Article  CAS  Google Scholar 

  41. Wu M, Lin X, Wang Y, Ma T (2015) Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. J Mater Chem A 3:19638–19656

    Article  CAS  Google Scholar 

  42. Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 116%. J Am Chem Soc 138:4201–4209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61604110, 51802234), Hong Kong Scholars Program (XJ2019025), Natural Science Foundation of Hubei Provincial (2018CFC796), China Scholarship Council (201808420125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixin Li or Lei Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiao, S., Li, W. et al. ZnO@ZIF-8 inverse opal structure photoanode for efficient CdS/CdSe co-sensitized quantum dot solar cells. J Mater Sci 55, 7453–7463 (2020). https://doi.org/10.1007/s10853-020-04534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04534-5

Navigation