Skip to main content
Log in

Versatile rattle-type magnetic mesoporous silica spheres, working as adsorbents and nanocatalyst containers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The well-defined rattle-type magnetic silica nanocomposite had been synthesized through a facile sol–gel process accompanied by a hard-template method. Structural characterizations indicated that the fabricated nanocomposite, denoted as γ-Fe2O3@SiO2–@mSiO2, was composed of nonporous silica-coating magnetic iron oxide encapsulated in mesoporous silica hollow sphere. The textural parameters of the nanocomposite are adjustable by controlling the preparation conditions. The unique structure of the prepared nanocomposite showed relatively high methylene blue adsorption capability and can be used for removal of dye from aqueous solution. In addition, some active metallic nanoparticles (such as Pt, Pd) can be introduced into the cavity of γ-Fe2O3@SiO2–@mSiO2 to construct confined integrated catalytic system. The designed Pt-based integrated nanocatalyst exhibited not only high activity and selectivity, but also an excellent reusability for the selective hydrogenation of nitrobenzol to aniline. The existence of magnetic core in the nanocomposite provides a facile separation from liquid solution.

Graphical Abstract

Rattle-type nanocomposite with nonporous silica-coating magnetic iron oxide nanoparticles encapsulated in mesoporous silica hollow sphere had been prepared. This unique nanocomposite exhibits excellent adsorption capability for methylene blue dye. After loaded with Pt nanoparticles, the formed functional nanoreactor is very active for selective hydrogenation of nitrobenzol to aniline and shows outstanding reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim SS, Zhang WZ, Pinnavaia TJ (1998) Science 282:1302–1305

    Article  Google Scholar 

  2. Zhang AF, Zhang YC, Xing N, Hou KK, Guo XW (2009) Chem Mater 21:4122–4126

    Article  Google Scholar 

  3. Zhao WR, Lang MD, Li YS, Li L, Shi JL (2009) J Mater Chem 19:2778–2783

    Article  Google Scholar 

  4. Baù L, Bártová B, Arduini M, Mancin F (2009) Chem Commun 48:7584–7586

    Article  Google Scholar 

  5. Zhang Q, Zhang TR, Ge JP, Yin YD (2008) Nano Lett 8:2867–2871

    Article  Google Scholar 

  6. Liu C, Li JS, Qi JW, Wang J, Luo R, Shen JY, Sun XY, Han WQ, Wang LJ (2014) ACS Appl Mater Interfaces 6:13167–13173

    Article  Google Scholar 

  7. Tan LF, Liu TL, Li LL, Liu HY, Wu XL, Gao FP, He XL, Meng XW, Chen D, Tang FQ (2013) RSC Adv 3:5649–5655

    Article  Google Scholar 

  8. Yu JG, Le Y, Cheng B (2012) RSC Adv 2:6784–6791

    Article  Google Scholar 

  9. Qiang L, Meng XW, Li LL, Chen D, Ren XL, Liu HY, Ren J, Fu CH, Liu TL, Gao FP, Zhang YQ, Tang FQ (2013) Chem Commun 49:7902–7904

    Article  Google Scholar 

  10. Du L, Liao SJ, Khatib HA, Stoddart JF, Zink JI (2009) J Am Chem Soc 131:15136–15142

    Article  Google Scholar 

  11. Zhang L, Qiao SZ, Jin YG, Yang HG, Budihartono S, Stahr F, Yan ZF, Wang XL, Hao ZP, Lu GQ (2008) Adv Funct Mater 18:3203–3212

    Article  Google Scholar 

  12. Zhu YF, Fang Y, Kaskel S (2010) J Phys Chem C 114:16382–16388

    Article  Google Scholar 

  13. Yang PP, Quan ZW, Hou ZY, Li CX, Kang XJ, Cheng ZY, Lin J (2009) Biomaterials 30:4786–4795

    Article  Google Scholar 

  14. Ruiz-Hernández E, Lόpez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regí M (2007) Chem Mater 19:3455–3463

    Article  Google Scholar 

  15. Chen Y, Chen HR, Zeng DP, Tian YB, Chen F, Feng JW, Shi JL (2010) ACS Nano 4:6001–6013

    Article  Google Scholar 

  16. Jin CZ, Wang YJ, Wei HS, Tang HL, Liu X, Lu T, Wang JH (2014) J Mater Chem A 2:11202–11208

    Article  Google Scholar 

  17. Deng YH, Cai Y, Sun ZK, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao DY (2010) J Am Chem Soc 132:8466–8473

    Article  Google Scholar 

  18. Alam S, Anand C, Ariga K, Mori T, Vinu A (2009) Angew Chem Int Ed 48:7358–7361

    Article  Google Scholar 

  19. Liong M, Angelos S, Choi E, Patel K, Stoddart JF, Zink JI (2009) J Mater Chem 19:6251–6257

    Article  Google Scholar 

  20. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Angew Chem Int Ed 47:8438–8441

    Article  Google Scholar 

  21. Zhang L, Qiao SZ, Jin YG, Chen ZG, Gu HC, Lu GQ (2008) Adv Mater 20:805–809

    Article  Google Scholar 

  22. Lan F, Hu H, Jiang W, Liu KX, Zeng XB, Wu Y, Gu ZW (2012) Nanoscale 4:2264–2267

    Article  Google Scholar 

  23. Zhao WR, Chen HR, Li YS, Li L, Lang MD, Shi JL (2008) Adv Funct Mater 18:2780–2788

    Article  Google Scholar 

  24. Zhu YF, Kockrick E, Ikoma T, Hanagata N, Kaskel S (2009) Chem Mater 21:2547–2553

    Article  Google Scholar 

  25. Yue Q, Zhang Y, Wang C, Wang XQ, Sun ZK, Hou XF, Zhao DY, Deng YH (2015) J Mater Chem A 3:4586–4594

    Article  Google Scholar 

  26. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Angew Chem Int Ed 48:5875–5879

    Article  Google Scholar 

  27. Jin CZ, Wang YJ, Tang HL, Wei HS, Liu X, Wang JH (2014) J Phys Chem C 118:25110–25117

    Article  Google Scholar 

  28. Zhao KF, Qiao BT, Zhang YJ, Wang JH (2013) Chin J Catal 34:1386–1394

    Article  Google Scholar 

  29. Peng XM, Huang DP, Odoom-Wubah T, Fu DF, Huang JL, Qin QD (2014) J Colloid Interface Sci 430:272–282

    Article  Google Scholar 

  30. Eftekhari S, Habibi-Yangjeh A, Sohrabnezhad SH (2010) J Hazard Mater 178:349–355

    Article  Google Scholar 

  31. Liu J, Yang HQ, Kleitz F, Chen ZG, Yang TY, Strounina E, Lu GQ, Qiao SZ (2012) Adv Funt Mater 22:591–599

    Article  Google Scholar 

  32. Lee J, Park JC, Song H (2008) Adv Mater 20:1523–1528

    Article  Google Scholar 

  33. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  Google Scholar 

  34. Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Angew Chem Int Ed 45:7063–7066

    Article  Google Scholar 

  35. Arnal PM, Comotti M, Schüth F (2006) Angew Chem Int Ed 45:8224–8227

    Article  Google Scholar 

  36. Li J, Zeng HC (2005) Angew Chem Int Ed 44:4342–4345

    Article  Google Scholar 

  37. Yang Y, Liu X, Li XB, Zhao J, Bai SY, Liu J, Yang QH (2012) Angew Chem Int Ed 51:9164–9168

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Nos. 21403220, 21476232, 11205160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzi Jin or Junhu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Wang, Y., Tang, H. et al. Versatile rattle-type magnetic mesoporous silica spheres, working as adsorbents and nanocatalyst containers. J Sol-Gel Sci Technol 77, 279–287 (2016). https://doi.org/10.1007/s10971-015-3830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3830-1

Keywords

Navigation