Skip to main content
Log in

Manganese substitution effects in SmFeO3 nanoparticles fabricated by self-ignited sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Through the optimization of process, a series of orthorhombic perovskite SmFe1−x Mn x O3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) nanoparticles were readily prepared by self-ignited sol–gel process. The Mn substitution effects on the structure, morphology and magnetic properties of SmFeO3 have been investigated in detail. Pure phase orthorhombic SmFeO3 is calcinated at 900 °C for 3 h. By the introduction of Mn3+, the synthesis temperature of orthorhombic perovskite-type SmFe1−x Mn x O3 particles has been lowered to be around 700 °C. At room temperature, weak ferromagnetic behavior is observed at SmFeO3 which is caused by its canted antiferromagnetic ordering. In the SmFe1−x Mn x O3 system for x ≤ 0.15, the weak ferromagnetic interactions are effectively enhanced with increasing Mn3+, showing increased magnetization and coercive field. However, for SmFe0.8Mn0.2O3 and SmFe0.75Mn0.25O3, the weak ferromagnetic couplings begin to decrease. SmFe0.85Mn0.15O3 displays the strongest ferromagnetic behavior. This peculiar behavior is ascribed to the complex magnetic interactions between Mn and Fe ions.

Graphical Abstract

A series of orthorhombic perovskite SmFe1−x Mn x O3 (0 ≤ x ≤ 0.25) nanopowders were readily prepared by self-ignited sol–gel process. The calcination temperature has been lowered to be around 700 °C by the introduction of Mn3+. SmFe0.85Mn0.15O3 displays the strongest ferromagnetic behavior. The tunability of the magnetic characteristics of SmFe1−x Mn x O3 is ascribed to the complex magnetic interactions between Mn and Fe ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yuan SJ, Ren W, Hong F, Wang YB, Zhang JC, Bellaiche L, Cao SX, Cao G (2013) Spin switching and magnetization reversal in single-crystal NdFeO3. Phys Rev B. doi:10.1103/PhysRevB.87.184405

    Google Scholar 

  2. Cheng Z, Hong F, Wang Y, Ozawa K, Fujii H, Kimura H, Du Y, Wang X, Dou S (2014) Interface Strain-induced multiferroicity in a SmFeO3 Film. ACS Appl Mater Interfaces 6(10):7356–7362. doi:10.1021/am500762c

    Article  Google Scholar 

  3. Mori M, Itagaki Y, Iseda J, Sadaoka Y, Ueda T, Mitsuhashi H, Nakatani M (2014) Influence of VOC structures on sensing property of SmFeO3 semiconductive gas sensor. Sens Actuators B Chem 202:873–877. doi:10.1016/j.snb.2014.06.031

    Article  Google Scholar 

  4. Bukhari SM, Penwell WD, Giorgi JB (2013) Doped samarium ferrite perovskites as carbon and sulfur resistant anodes for low temperature solid oxide fuel cells. ECS Trans 57(1):1507–1515

    Article  Google Scholar 

  5. Giang HT, Duy HT, Ngan PQ, Thai GH, Thu DTA, Thu DT, Toan NN (2013) High sensitivity and selectivity of mixed potential sensor based on Pt/YSZ/SmFeO3 to NO2 gas. Sens Actuators B Chem 183:550–555. doi:10.1016/j.snb.2013.04.035

    Article  Google Scholar 

  6. Che R, Jiang Y, Wei L, He X (2013) Preparation and thermal analysis kinetics of the core–nanoshell composite materials doped with Sm. J Therm Anal Calorim 116(2):905–913. doi:10.1007/s10973-013-3575-4

    Article  Google Scholar 

  7. Jeong YK, Lee J-H, Ahn S-J, Jang HM (2012) Temperature-induced magnetization reversal and ultra-fast magnetic switch at low field in SmFeO3. Solid State Commun 152(13):1112–1115. doi:10.1016/j.ssc.2012.04.010

    Article  Google Scholar 

  8. Cao S, Zhao H, Kang B, Zhang J, Ren W (2014) Temperature induced spin switching in SmFeO3 single crystal. Sci Rep 4:5960. doi:10.1038/srep05960

    Google Scholar 

  9. Lee J-H, Jeong YK, Park JH, Oak M-A, Jang HM, Son JY, Scott JF (2011) Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys Rev Lett. doi:10.1103/PhysRevLett.107.117201

    Google Scholar 

  10. Wang B, Zhao X, Wu A, Cao S, Xu J, Kalashnikova AM, Pisarev RV (2015) Single crystal growth and magnetic properties of Sm0.7Tb0.3FeO3 orthoferrite single crystal. J Magn Magn Mater 379:192–195. doi:10.1016/j.jmmm.2014.12.030

    Article  Google Scholar 

  11. Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J (2013) Enhanced 4f-3d interaction by Ti-doping on the magnetic properties of perovskite SmFe1−x Ti x O3. J Appl Phys 114(11):113907. doi:10.1063/1.4821503

    Article  Google Scholar 

  12. Li N-N, Li H, Tang R-L, Han D-D, Zhao Y-S, Gao W, Zhu P-W, Wang X (2014) Doping effects on structural and magnetic evolutions of orthoferrite SmFe(1−x)Al x O3. Chin Phys B 23(4):046105. doi:10.1088/1674-1056/23/4/046105

    Article  Google Scholar 

  13. Bouziane K, Yousif A, Abdel-Latif IA, Hricovini K, Richter C (2005) Electronic and magnetic properties of SmFe1−x Mn x O3 orthoferrites (x = 0.1, 0.2, and 0.3). J Appl Phys 97(10):10A504. doi:10.1063/1.1851406

    Article  Google Scholar 

  14. Zhao H, Cao S, Huang R, Ren W, Yuan S, Kang B, Lu B, Zhang J (2013) Enhanced 4f-3d interaction by Ti-doping on the magnetic properties of perovskite SmFe1−x Ti x O3. J Appl Phys 114(11):113907

    Article  Google Scholar 

  15. Bukhari SM, Giorgi JB (2009) Tuneability of Sm(1−x)Ce x FeOλ perovskites: thermal stability and electrical conductivity. Solid State Ion 180(2):198–204

    Article  Google Scholar 

  16. Sivakumar M, Gedanken A, Zhong W, Jiang Y, Du Y, Brukental I, Bhattacharya D, Yeshurun Y, Nowik I (2004) Sonochemical synthesis of nanocrystalline LaFeO3. J Mater Chem 14(4):764–769

    Article  Google Scholar 

  17. Zhou Z, Guo L, Yang H, Liu Q, Ye F (2014) Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J Alloy Compd 583:21–31. doi:10.1016/j.jallcom.2013.08.129

    Article  Google Scholar 

  18. Shen H, Xu J, Wu A (2010) Preparation and characterization of perovskite REFeO3 nanocrystalline powders. J Rare Earths 28(3):416–419

    Article  Google Scholar 

  19. Jiang L, Liu W, Wu A, Xu J, Liu Q, Luo L, Zhang H (2011) Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels. J Sol–Gel Sci Technol 61(3):527–533. doi:10.1007/s10971-011-2655-9

    Article  Google Scholar 

  20. Naidu BS, Gupta U, Maitra U, Rao CNR (2014) Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides. Chem Phys Lett 591:277–281. doi:10.1016/j.cplett.2013.10.089

    Article  Google Scholar 

  21. Gil A, Gandía LM, Korili SA (2004) Effect of the temperature of calcination on the catalytic performance of manganese- and samarium-manganese-based oxides in the complete oxidation of acetone. Appl Catal A 274(1–2):229–235. doi:10.1016/j.apcata.2004.07.004

    Article  Google Scholar 

  22. Novák P, Nekvasil V, Knížek K (2014) Crystal field and magnetism with Wannier functions: orthorhombic rare-earth manganites. J Magn Magn Mater 358–359:228–232. doi:10.1016/j.jmmm.2014.01.076

    Article  Google Scholar 

  23. Yuan S, Yang Y, Cao Y, Wu A, Lu B, Cao S, Zhang J (2014) Tailoring complex magnetic phase transition in HoFeO3. Solid State Commun 188:19–22

    Article  Google Scholar 

  24. Jaiswal A, Das R, Adyanthaya S, Poddar P (2011) Surface effects on morin transition, exchange bias, and enchanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J Phys Chem C 115(7):2954–2960. doi:10.1021/jp109313w

    Article  Google Scholar 

  25. Saravana Kumar K, Aswini P, Venkateswaran C (2014) Effect of Tb–Mn substitution on the magnetic and electrical properties of BiFeO3 ceramics. J Magn Magn Mater 364:60–67. doi:10.1016/j.jmmm.2014.04.008

    Article  Google Scholar 

  26. Bedekar V, Jayakumar OD, Manjanna J, Tyagi AK (2008) Synthesis and magnetic studies of nano-crystalline GdFeO3. Mater Lett 62(23):3793–3795. doi:10.1016/j.matlet.2008.04.053

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 51002097, 51342007, 51472263), the Science and Technology Commission of Shanghai Municipality (No. 15ZR1440600), Shanghai Education Commission (13ZZ134), and Shanghai council for the promotion of transformation of scientific and technological achievements (14CXY36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Shen or Jiayue Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shen, H. & Xu, J. Manganese substitution effects in SmFeO3 nanoparticles fabricated by self-ignited sol–gel process. J Sol-Gel Sci Technol 76, 637–643 (2015). https://doi.org/10.1007/s10971-015-3815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3815-0

Keywords

Navigation