Skip to main content
Log in

Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

EDTA and citric acid as two typical chelating reagents with multi-carboxyl groups were used to prepare DyFeO3 nanopowders, respectively. The experimental results show that all of the carboxylate-based gels exhibited auto-propagating combustion behaviors. The XRD results indicate that DyFeO3 single phase can be formed directly with CA/MN (citric acid to metal nitrate mole ratio) = 1 when the calcination temperature was above 700 °C. The specimen with EA/MN (EDTA to metal nitrate mole ratio) = 1 had the minimum crystallite size of 33 nm. The SEM images show that the as-burnt powders prepared with EDTA had more excellent dispersibility feature and clearer grain boundaries than that of citric acid. The magnetic measurement results show that DyFeO3 nanopowders displayed antiferromagnetism characteristics at low temperatures due to the strong exchange interaction between Fe sublattice. As the ambient temperature increased, there was a transition from antiferromagnetism to paramagnetism in DyFeO3 nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mathur S, Veith M, Rapalaviciute R, Shen H, Goya GF, Filho WLM, Berquo TS (2004) Chem Mater 16:1906

    Article  CAS  Google Scholar 

  2. Schmool DS, Keller N, Guyot M, Krishnan R, Tessier M (1999) J Magn Magn Mater 195:291

    Article  CAS  Google Scholar 

  3. Mih NQ (1993) J Am Ceram Soc 76:563

    Article  Google Scholar 

  4. Bai SL, Fu XX, Wang JZ, Yang QH, Sun YH, Zeng SL (2000) Chin J Appl Chem 17:343

    CAS  Google Scholar 

  5. Shimizu Y, Shimabukuro M, Arai H, Seiyama T (1985) Chem Lett 163:917

    Article  Google Scholar 

  6. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E (1999) Sens Actuators B 55:79

    Article  Google Scholar 

  7. Pandya HN, Kulkami RG, Parsania PH (1990) Mater Res Bull 25:1073

    Article  CAS  Google Scholar 

  8. Zheng WJ, Liu RH, Peng DK, Meng GY (2000) Mater Lett 43:19

    Article  CAS  Google Scholar 

  9. Xiao J, Hong GY, Yu DC, Dong XT (1994) Acta Chim Sin 52:784

    CAS  Google Scholar 

  10. Ginnakas AE, Ladavos AK, Pomonis PJ (2004) Appl Catal B Environ 49:147

    Article  Google Scholar 

  11. Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurun Y, Nowik I (2004) J Mater Chem 14:764

    Article  CAS  Google Scholar 

  12. Pal M, Chakravorty D (2000) Physica E 5:200

    Article  Google Scholar 

  13. Narendar Y, Messing GL (1997) Catal Today 35:247

    Article  CAS  Google Scholar 

  14. Liu T, Xu Y, Zeng C (2011) Mater Sci Eng B 176:535

    Article  CAS  Google Scholar 

  15. Wang HW (2002) Mater Chem Phys 74:1

    Article  CAS  Google Scholar 

  16. Shi M, Chen M, Zuo R, Xu Y, Su H, Wang L, Yu T (2010) Powder Technol 204:188

    Article  CAS  Google Scholar 

  17. Wu KH, Huang WC (2004) J Solid State Chem 177:3052

    Article  CAS  Google Scholar 

  18. Yue Z, Li L, Zhou J, Zhang H, Gui Z (1999) Mater Sci Eng B 64:68

    Article  Google Scholar 

  19. Ari M, Miller KJ, Marinkovic BA, Jardim PM, Avillez RD, Rizzo F, White MA (2011) J Sol–Gel Sci Technol 58:121

    Article  CAS  Google Scholar 

  20. Feng J, Liu T, Xu Y, Zhao J, He Y (2011) Ceram Int 37:1203

    Article  CAS  Google Scholar 

  21. Vajargah SH, Hosseini HRM, Nemati ZA (2007) J Alloy Compd 430:339

    Article  Google Scholar 

  22. Guo XZ, Ravi BG, Devi PS, Hanson JC, Margolies J, Gambino RJ, Parise JB, Sampath S (2005) J Magn Magn Mater 295:145

    Article  CAS  Google Scholar 

  23. Qi X, Zhou J, Yue Z, Gui Z, Li L (2002) Mater Chem Phys 78:25

    Article  CAS  Google Scholar 

  24. Shen H, Cheng G, Wu A, Xu J, Zhao J (2009) Phys Stat Sol A 206:1420

    Article  CAS  Google Scholar 

  25. Buscaglia V, Caracciolo F, Leoni M, Nanni P (1997) Acta Mater 45:1213

    Article  CAS  Google Scholar 

  26. Kuroda CS, Taniyama T, Kitamoto Y, Yamazaki Y (2002) J Magn Magn Mater 241:201

    Article  CAS  Google Scholar 

  27. Taketomi S, Sorensen CM, Klabunde KJ (2000) J Magn Magn Mater 222:54

    Article  CAS  Google Scholar 

  28. Bedekar V, Jayakumar OD, Manjunna J, Tyagi AK (2008) Matter Lett 62:3793

    Article  CAS  Google Scholar 

  29. Wu AH, Shen H, Xu J, Jiang LW, Luo LQ, Yuan SJ, Cao SX, Zhang HJ (2011) J Sol–Gel Sci Technol 59:158

    Article  CAS  Google Scholar 

  30. Maiti R, Basu S, Chakravorty D (2009) J Magn Magn Mater 321:3274

    Article  CAS  Google Scholar 

  31. Mathur S, Shen H, Lecerf N, Kjekshus A, Fjellvag H, Goya GF (2002) Adv Mater 14:1405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundations of China (Grant No. 50932003 and 51002097). This work is also supported by the Opening Project of State Key laboratory of Crystal Material (Grant No. KF1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiliang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Liu, W., Wu, A. et al. Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels. J Sol-Gel Sci Technol 61, 527–533 (2012). https://doi.org/10.1007/s10971-011-2655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2655-9

Keywords

Navigation