Skip to main content

Advertisement

Log in

Microwave rapid conversion of sol–gel-derived hydroxyapatite into β-tricalcium phosphate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Calcium phosphate-based biomaterials are of great interest due to their use in various biomedical applications. Current preparation methods of β-tricalcium phosphate (β-TCP) require the processing of calcium phosphate precursors at high temperatures for long periods. Sol–gel-derived calcium-deficient carbonated hydroxyapatite (CHA) samples were synthesized and then aged at different times (24 and 90 h), while other freshly prepared samples were subjected to microwave (MW) radiation for 10 min in order to prepare β-TCP. All samples were calcined (at 750 °C) and then were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The 24-h-aged samples showed complete degradation into β-TCP and calcium pyrophosphate (CPP) phases. However, only β-TCP phase was detected in the 90-h-aged samples. Furthermore, β-TCP as the major phase was also obtained in the 10-min MW-treated unaged samples. The aging of sol–gel-derived CHA samples for 90 h had a positive effect on the conversion of CHA into β-TCP phase. Furthermore, the MW treatment of the unaged CHA samples enhanced its total conversion into β-TCP in shorter time which could be attributed to the MW irradiation-induced effect on the CHA structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nageeb M, Nouh SR, Bergman K et al (2012) Bone engineering by biomimetic injectable hydrogel. Mol Cryst Liq Cryst 555:177–188. doi:10.1080/15421406.2012.635530

    Article  Google Scholar 

  2. Eweida AM, Nabawi AS, Marei MK et al (2011) Mandibular reconstruction using an axially vascularized tissue-engineered construct. Ann Surg Innov Res 5:2. doi:10.1186/1750-1164-5-2

    Article  Google Scholar 

  3. Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455. doi:10.1016/j.actbio.2012.04.012

    Article  Google Scholar 

  4. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689. doi:10.1089/107632701753337645

    Article  Google Scholar 

  5. Kumar TSS, Manjubala I, Gunasekaran J (2000) Synthesis of carbonated calcium phosphate ceramics using microwave irradiation. Biomaterials 21:1623–1629

    Article  Google Scholar 

  6. Barakat NAM, Khalil KA, Sheikh FA et al (2008) Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28:1381–1387. doi:10.1016/j.msec.2008.03.003

    Article  Google Scholar 

  7. Zou Z, Lin K, Chen L, Chang J (2012) Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process. Ultrason Sonochem 19:1174–1179. doi:10.1016/j.ultsonch.2012.04.002

    Article  Google Scholar 

  8. Sanosh KP, Chu M, Balakrishnan A, Kim TN (2009) Preparation and characterization of nano-hydroxyapatite powder using sol–gel technique. Bull Mater Sci 32:465–470

    Article  Google Scholar 

  9. Liu D-M, Troczynski T, Tseng WJ (2002) Aging effect on the phase evolution of water-based sol–gel hydroxyapatite. Biomaterials 23:1227–1236

    Article  Google Scholar 

  10. Wang L, Fan H, Zhang Z-Y et al (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31:9452–9461. doi:10.1016/j.biomaterials.2010.08.036

    Article  Google Scholar 

  11. Stiller M, Rack A, Zabler S et al (2009) Quantification of bone tissue regeneration employing beta-tricalcium phosphate by three-dimensional non-invasive synchrotron micro-tomography—a comparative examination with histomorphometry. Bone 44:619–628. doi:10.1016/j.bone.2008.10.049

    Article  Google Scholar 

  12. Rangavittal N, Landa-Canovas AR, Gonzalez-Calbet JM, Vallet-Regi M (2000) Structural study and stability of hydroxyapatite and β-tricalcium phosphate: two important bioceramics. J Biomed Mater Res, Part A 51:660–668

    Article  Google Scholar 

  13. Ryu H, Youn H, Hong KS et al (2002) An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23:909–914

    Article  Google Scholar 

  14. Matsumoto N, Yoshida K, Hashimoto K, Toda Y (2010) Preparation of beta-tricalcium phosphate powder substituted with Na/Mg ions by polymerized complex method. J Am Ceram Soc 93:3663–3670. doi:10.1111/j.1551-2916.2010.03959.x

    Article  Google Scholar 

  15. Geng F, Tan LL, Jin XX et al (2009) The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. J Mater Sci Mater Med 20:1149–1157. doi:10.1007/s10856-008-3669-x

    Article  Google Scholar 

  16. Lin FH, Liao CJ, Chen KS, Sun JS (1998) Preparation of high-temperature stabilized beta-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7 × 10H2O addition. Biomaterials 19:1101–1107

    Article  Google Scholar 

  17. Matsumoto N, Sato K, Yoshida K et al (2009) Preparation and characterization of beta-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater 5:3157–3164. doi:10.1016/j.actbio.2009.04.010

    Article  Google Scholar 

  18. Jalota S, Tas AC, Bhaduri SB (2004) Microwave-assisted synthesis of calcium phosphate nanowhiskers. J Mater Res 19:1876–1881. doi:10.1557/JMR.2004.0230

    Article  Google Scholar 

  19. Mahmoud MM, Folz DC, Suchicital CTA, Clark DE (2012) Crystallization of lithium disilicate glass using microwave processing. J Am Ceram Soc 95:579–585. doi:10.1111/j.1551-2916.2011.04936.x

    Article  Google Scholar 

  20. Clarke DE, Folz DC, Folgar CE, Mahmoud MM (eds) (2005) Microwave solutions for ceramic engineers, vol 494. The American Ceramic Society, Westerville, Ohio

    Google Scholar 

  21. Clark DE, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26:299–331. doi:10.1146/annurev.ms.26.080196.001503

    Article  Google Scholar 

  22. Agrawal D (2010) Latest global developments in microwave materials processing. Mater Res Innov 14:3–8. doi:10.1179/143307510X12599329342926

    Article  Google Scholar 

  23. Webster TJ, Ergun C, Doremus RH et al (2001) Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22:1327–1333. doi:10.1016/S0142-9612(00)00285-4

    Article  Google Scholar 

  24. Kundu PK, Waghode TS, Bahadur D, Datta D (1998) Cell culture approach to biocompatibility evaluation of unconventionally prepared hydroxyapatite. Med Biol Eng Comput 36:654–658

    Article  Google Scholar 

  25. Murugan R, Ramakrishna S (2005) Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J Cryst Growth 274:209–213. doi:10.1016/j.jcrysgro.2004.09.069

    Article  Google Scholar 

  26. Huang Y, Zhou G, Zheng L et al (2012) Micro-/nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale 4:2484–2490. doi:10.1039/c2nr12072k

    Article  Google Scholar 

  27. Bakan F, Laçin O, Sarac H (2013) A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol 233:295–302. doi:10.1016/j.powtec.2012.08.030

    Article  Google Scholar 

  28. Han J-K, Song H-Y, Saito F, Lee B-T (2006) Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 99:235–239. doi:10.1016/j.matchemphys.2005.10.017

    Article  Google Scholar 

  29. Lee B-T, Youn M-H, Paul RK et al (2007) In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater Chem Phys 104:249–253. doi:10.1016/j.matchemphys.2007.02.009

    Article  Google Scholar 

  30. Lak A, Mazloumi M, Mohajerani MS et al (2008) Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. J Am Ceram Soc 91:3580–3584. doi:10.1111/j.1551-2916.2008.02690.x

    Article  Google Scholar 

  31. Poinern G, Brundavanam R, Le XT et al (2011) Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. Int J Nanomedicine 6:2083–2095

    Article  Google Scholar 

  32. Mostafa NY (2005) Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys 94:333–341. doi:10.1016/j.matchemphys.2005.05.011

    Article  Google Scholar 

  33. Kuriakose TA, Kalkura SN, Palanichamy M et al (2004) Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Cryst Growth 263:517–523. doi:10.1016/j.jcrysgro.2003.11.057

    Article  Google Scholar 

  34. Pattanayak DK, Dash R, Prasad RC et al (2007) Synthesis and sintered properties evaluation of calcium phosphate ceramics. Mater Sci Eng C 27:684–690. doi:10.1016/j.msec.2006.06.021

    Article  Google Scholar 

  35. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612. doi:10.1002/jbm.10280

    Article  Google Scholar 

  36. Kalita SJ, Verma S (2010) Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater Sci Eng C 30:295–303. doi:10.1016/j.msec.2009.11.007

    Article  Google Scholar 

  37. Anee TK, Ashok M, Palanichamy M, Kalkura SN (2003) A novel technique to synthesize hydroxyapatite at low temperature. Mater Chem Phys 80:725–730. doi:10.1016/S0254-0584(03)00116-0

    Article  Google Scholar 

  38. Nazir R, Iqbal N, Khan AS et al (2012) Rapid synthesis of thermally stable hydroxyapaptite. Ceram Int 38:457

    Article  Google Scholar 

  39. Sarig S, Kahana F (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237–239:55–59. doi:10.1016/S0022-0248(01)01850-4

    Article  Google Scholar 

  40. Tõnsuaadu K, Gross KA, Plūduma L, Veiderma M (2012) A review on the thermal stability of calcium apatites. J Therm Anal Calorim 110:647–659. doi:10.1007/s10973-011-1877-y

    Article  Google Scholar 

  41. Ji H, Marquis PM (1991) Modification of hydroxyapatite during transmission electron microscopy. J Mater Sci Lett 10:132–134. doi:10.1007/BF02352825

    Article  Google Scholar 

  42. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349. doi:10.1006/jssc.2000.9238

    Article  Google Scholar 

  43. Cihlar J, Buchal A, Trunec M (1999) Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci 34:6121–6131

    Article  Google Scholar 

  44. Nicolopoulos S, Gonzalez-Calbet JM, Alonso MP et al (1995) Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compounds. J Solid State Chem 116:265–274

    Article  Google Scholar 

  45. Brrs EF, Hutchison JL, Senger B et al (1991) HREM study of irradiation damage in human dental enamel crystals. Ultramicroscopy 35:305–322

    Article  Google Scholar 

  46. Suchanek WL, Shuk P, Byrappa K et al (2002) Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23:699–710. doi:10.1016/S0142-9612(01)00158-2

    Article  Google Scholar 

  47. Layrolle P, Ito A, Tateishi T (1998) Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc 81:1421–1428

    Article  Google Scholar 

  48. Kee CC, Ismail H, Mohd Noor AF (2013) Effect of synthesis technique and carbonate content on the crystallinity and morphology of carbonated hydroxyapatite. J Mater Sci Technol 29:761–764. doi:10.1016/j.jmst.2013.05.016

    Article  Google Scholar 

  49. Wagner DE, Eisenmann KM, Nestor-kalinoski AL, Bhaduri SB (2013) A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomater 9:8422–8432. doi:10.1016/j.actbio.2013.05.033

    Article  Google Scholar 

  50. Guha A, Nayar S, Thatoi HN (2010) Microwave irradiation enhances kinetics of the biomimetic process of hydroxyapatite nanocomposites. Bioinspiration Biomim. doi:10.1088/1748-3182/5/2/024001

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Egyptian Science and Technology Development Fund (STDF) for funding the current study through the Project #6118, STDF-STF agreement. The authors would like to dedicate this work for the soul of Prof. Moustafa Fakhry Khalil, Professor of Dental Biomaterials, Faculty of Dentistry, Alexandria University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morsi Mohamed Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.N., Mahmoud, M.M., El-Fattah, A.A. et al. Microwave rapid conversion of sol–gel-derived hydroxyapatite into β-tricalcium phosphate. J Sol-Gel Sci Technol 76, 74–81 (2015). https://doi.org/10.1007/s10971-015-3753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3753-x

Keywords

Navigation