Skip to main content
Log in

Study on the synthesis and application of silicone resin containing phenyl group

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silicone resin containing phenyl group was synthesized by hydrolysis–condensation reaction using tetraethoxysilane (TEOS), chlorotrimethylsilane (TMCS) and phenyltriethoxysilane (PhTES). 1H-NMR and 29Si-NMR spectroscopy characterizations also confirmed that silicone resin was successfully obtained based on the combination of TEOS, PhTES and TMCS in a crosslinked network structure. Silicone resin has been thoroughly characterized using gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible spectroscopy, contact angle and softening point measurements. A steady increase in the molecular weight, hydrophobic, softening point and maximum degradation temperature of the silicone resin has been observed with the increasing weight percentage of the PhTES crosslink, but transmittance properties decreased. It has been shown that the non-polar component of the higher contact angle of silicone resin can be increased up to 113° by 3 % PhTES.Silicone resin applied to silicone pressure-sensitive adhesives (SPSA) to increase the hydrophobic indicated a decrease in surface energy, leading to improved wettability for polytetrafluoroethylene. The peel strength of SPSA can be increased up to 8 N/2.5 cm by content PhTES 2 % of silicone resin and increased 54 % without PhTES.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiang H, Ge J, Cheng S, Han H, Cui S (2011) J Sol-Gel Sci Technol 59:635

    Article  Google Scholar 

  2. Zhang Y, Yang X, Zhao X, Huang W (2012) Polym Int 61:294

    Article  Google Scholar 

  3. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Adv Mater 24:2409

    Article  Google Scholar 

  4. Kuo CFJ, Chen JB, Shih CY, Huang CY (2014) J Appl Polym Sci. doi:10.1002/app.40317

    Google Scholar 

  5. Nakamura Y, Sakai Y, Imamura K, Ito K, Fujii S, Urahama Y (2012) J Appl Polym Sci 123:2883

    Article  Google Scholar 

  6. Raja PR, Hagood AG, Peters MA, Croll SG (2013) Int J Adhes Adhes 41:160

    Article  Google Scholar 

  7. Liu Y, Yang G, Xiao HM, Feng QP, Fu SY (2013) Int J Adhes Adhes 41:113

    Article  Google Scholar 

  8. Calabrese L, Bonaccorsi L, Caprì A, Proverbio E (2014) Prog Org Coat 77:1341

    Article  Google Scholar 

  9. Fang L, Chang L, Guo WJ, Chen Y, Wang Z (2014) Appl Surf Sci 288:682

    Article  Google Scholar 

  10. Araki S, Imasaka S, Tanaka S, Miyake Y (2011) J Membr Sci 380:41

    Article  Google Scholar 

  11. Sasaki T, Tanaka S (2011) J Hazard Mater 196:327

    Article  Google Scholar 

  12. Bains RS, Kendrick DA, Parsonage JR (1993) Polym Int 31:87

    Article  Google Scholar 

  13. Lentz CW (1964) Inorg Chem 3:574

    Article  Google Scholar 

  14. Huang W, Huang Y, Yu YJ (1998) Appl Polym Sci 70:1753

    Article  Google Scholar 

  15. Jitianu A, Amatucci G, Klein LC (2009) J Am Ceram Soc 92:36

    Article  Google Scholar 

  16. Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) J Sol-Gel Sci Technol 39:175

    Article  Google Scholar 

  17. Böhm O, Leitsmann R, Plänitz P, Radehaus C, Schaller M, Schreiber M (2012) Comput Theor Chem 991:44

    Article  Google Scholar 

  18. Kim WS, Kim KS, Eo YJ (2005) J Mater Chem 15:465

    Article  Google Scholar 

  19. Gokulakrishnana N, Karbowiak T, Bellat JP, Vonna L, Saada MA, Paillaud JL, Soulard M, Patarin J, Parmentier J (2013) Colloid Surf A Physicochem Eng Asp 421:34

    Article  Google Scholar 

  20. Chu HH, Chiang WL, Chuang KS (2012) Int J Adhes Adhes 38:89

    Article  Google Scholar 

  21. Menaa B, Takahashi M, Tokuda Y, Yoko T (2006) J Sol-Gel Sci Technol 39:185

    Article  Google Scholar 

  22. Sun X, Xu Y, Jiang D, Yang D, Wu D, Sun Y, Yang Y, Yuan H, Deng F (2006) Colloid Surf A Physicochem Eng Asp 289:149

    Article  Google Scholar 

  23. Kong WS, Ju TJ, Park JH, Joo SR, Yoon HG, Lee JW (2012) Int J Adhes Adhes 38:38

    Article  Google Scholar 

  24. Xu X, Wu C, Zhang B, Dong H (2013) J Appl Polym Sci 2012(128):4189

    Article  Google Scholar 

  25. Menaa B, Takahashi M, Tokuda Y, Yoko T (2007) Opt Mater 29:806

    Article  Google Scholar 

  26. Redondo SUA, Radovanovic E, Torriani IL, Yoshida IVP (2001) Polymer 42:1319

    Article  Google Scholar 

  27. José NM, Prado LASA, Yoshida IVPJ (2004) Polym Sci Part B Polym Phys 42:4281

    Article  Google Scholar 

  28. José NM, Prado LASA, Schiavon MA, Redondo SUA, Yoshida IVPJ (2007) J Polym Sci Part B: Polym Phys 45:299

    Article  Google Scholar 

  29. Prado LASA, Sforça ML, de Oliveira AG, Yoshida IVPJ (2008) Eur Polym J 44:3080

    Article  Google Scholar 

  30. Yang Z, Han S, Zhang R, Feng S, Zhang C, Zhang S (2011) Polym Degrad Stab 96:2145

    Article  Google Scholar 

  31. Raja PR, Hagood AG, Peters MA, Croll SG (2013) J Adhes Adhes 41:160

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Bureau of Energy, Ministry of Economic Affairs of the Republic of China under the Grant No. 102-E0608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Feng Jeffrey Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CF.J., Chen, JB. Study on the synthesis and application of silicone resin containing phenyl group. J Sol-Gel Sci Technol 76, 66–73 (2015). https://doi.org/10.1007/s10971-015-3752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3752-y

Keywords

Navigation