Skip to main content
Log in

Multiferroic properties of Bi3.15Nd0.85Ti3O12–NiFe2O4–Bi3.15Nd0.85Ti3O12 trilayer composite thin films prepared by a sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lead-free multiferroic Bi3.15Nd0.85Ti3O12–NiFe2O4–Bi3.15Nd0.85Ti3O12 trilayer composite thin films were oriented and deposited on LaNiO3/Si substrates via sol–gel method. In the heterostructures, the coexistence of ferroelectric polarization (P r = 7 μC/cm2), magnetization (M s = 110 emu/cm3), high in-plane magnetoelectric voltage coefficient (αE = ~43 mV/cm Oe), and distinct converse magnetoelectric effect has been validated at room temperature, which is advantageous for multi-functional devices. The improved magnetic and magnetoelectric properties may be due to the oriented growth, whereas the ferroelectric properties was enhanced because of the improved fatigue endurance properties and reduced leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ramesh R, Spaldin NA (2007) Nat Mater 6:21

    Article  Google Scholar 

  2. Bibes M, Barthélémy A (2008) Nat Mater 7:425

    Article  Google Scholar 

  3. Yang F, Tang MH, Ye Z, Zhou YC, Zheng XJ, Tang JX, Zhang JJ, He J (2007) J Appl Phys 102:044504

    Article  Google Scholar 

  4. Ma J, Hu J, Li Z, Nan CW (2011) Adv Mater 23:1062

    Article  Google Scholar 

  5. Gehring GA (1994) Ferroelectrics 161:275

    Article  Google Scholar 

  6. Zhang Y, Deng C, Ma J, Lin Y, Nan CW (2008) Appl Phys Lett 92:062911

    Article  Google Scholar 

  7. Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu JM (2005) Appl Phys Lett 86:122501

    Article  Google Scholar 

  8. Tang ZH, Xiong Y, Tang MH, Xiao YG, Zhang W, Yuan ML, Ouyang J, Zhou YC (2014) J Mater Chem C 2:1427

    Article  Google Scholar 

  9. Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, Tokura Y (2004) Science 305:646

    Article  Google Scholar 

  10. Yanase A, Siratori K (1984) J Phys Soc Jpn 53:312

    Article  Google Scholar 

  11. Brabers VAM (1995) Progress in spinel ferrite research. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 8. Elsevier Science, Amsterdam, pp 189–324

  12. Zhang SB, Wei SH (2002) Appl Phys Lett 80:1376

    Article  Google Scholar 

  13. Johnston DC, Prakash H, Zachariasen WH, Viswanathan R (1973) Mater Res Bull 8:777

    Article  Google Scholar 

  14. Kondo S, Johnston DC, Swenson CA, Borsa F, Mahajan AV, Miller LL, Gu T, Goldman AI, Maple MB, Gajewski DA, Freeman EJ, Dilley NR, Dickey RP, Merrin J, Kojima K, Luke GM, Uemura YJ, Chmaissem O, Jorgensen JD (1997) Phys Rev Lett 78:3729

    Article  Google Scholar 

  15. Suzuki Y (2001) Annu Rev Mater Res 31:265

    Article  Google Scholar 

  16. Lüders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour JP, Bobo JF, Fontcuberta J, Fert A (2006) Adv Mater 18:1733

    Article  Google Scholar 

  17. Hu GD (2006) J Appl Phys 100:096109

    Article  Google Scholar 

  18. Lu CJ, Qiao Y, Qi YJ, Chen XQ, Zhu JS (2005) Appl Phys Lett 87:222901

    Article  Google Scholar 

  19. Islam RA, Priya S (2006) Appl Phys Lett 89:152911

    Article  Google Scholar 

  20. Deng C, Zhang Y, Ma J, Lin Y, Nan CW (2008) Acta Mater 56:405

    Article  Google Scholar 

  21. Tomar MS, Melgarejo RE, Singh SP (2005) Microelectron J 36:574

    Article  Google Scholar 

  22. Kim KT, Kim CI (2004) Surf Coat Technol 177–178:770

    Article  Google Scholar 

  23. Baruwati B, Rana RK, Manorama SV (2007) J Appl Phys 101:014302

    Article  Google Scholar 

  24. Takahashi M, Noguchi Y, Miyayama M (2002) Jpn J Appl Phys 41:7053

    Article  Google Scholar 

  25. Takahashi M (2004) Solid State Ion 172:325

    Article  Google Scholar 

  26. Ye Z, Tang MH, Zhou YC, Zheng XJ, Cheng CP, Hu ZS, Hu HP (2007) Appl Phys Lett 90:082905

    Article  Google Scholar 

  27. Kim JS, Ahn CW, Lee HJ, Lee SY, Kim IW, Bae JS, Jeong JH (2004) Ceram Int 30:1565

    Article  Google Scholar 

  28. Charris-Hernández A, Melgarejo R, Barrionuevo D, Kumar A, Tomar MS (2013) J Appl Phys 114:034108

    Article  Google Scholar 

  29. Baudry L (1999) J Appl Phys 86:1096

    Article  Google Scholar 

  30. Zhang ST, Zhang XJ, Cheng HW, Chen YF, Liu ZG, Ming NB, Hu XB, Wang JY (2003) Appl Phys Lett 83:4378

    Article  Google Scholar 

  31. Chang YC, Kuo DH (2006) Thin Solid Films 515:1683

    Article  Google Scholar 

  32. Zhang N, Srinivasan G, Balbashov AM (2009) J Mater Sci 44:5120

    Article  Google Scholar 

  33. Yang F, Zhou YC, Tang MH, Liu F, Ma Y, Zheng XJ, Zhao WF, Xu HY, Sun ZH (2009) J Phys D Appl Phys 42:072004

    Article  Google Scholar 

  34. Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA (1999) Science 285:867

    Article  Google Scholar 

  35. Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Science 315:349

    Article  Google Scholar 

  36. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Nature 408:944

    Article  Google Scholar 

  37. Yamada Y, Ueno K, Fukumura T, Yuan HT, Shimotani H, Iwasa Y, Gu L, Tsukimoto S, Ikuhara Y, Kawasaki M (2011) Science 332:1065

    Article  Google Scholar 

  38. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Nat Mater 11:103

    Article  Google Scholar 

  39. Chakhalian J, Millis AJ, Rondinelli J (2012) Nat Mater 11:92

    Article  Google Scholar 

  40. Eerenstein W, Wiora M, Prieto JL, Scott JF, Mathur ND (2007) Nat Mater 6:348

    Article  Google Scholar 

  41. Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Adv Funct Mater 19:1826

    Article  Google Scholar 

  42. Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P, Han SJ et al (2008) Nano Lett 8:2050

    Article  Google Scholar 

  43. Dho J, Qi X, Kim H, MacManus-Driscoll JL, Blamire MG (2006) Adv Mater 18:1445

    Article  Google Scholar 

  44. Chu YH, Martin LW, Holcomb MB, Gajek M, Han SJ, He Q et al (2008) Nat Mater 7:478

    Article  Google Scholar 

  45. Rondinelli JM, Stengel M, Spaldin NA (2008) Nat Nanotechnol 3:46

    Article  Google Scholar 

  46. Duan CG, Velev JP, Sabirianov RF, Zhu Z, Chu J, Jaswal SS et al (2008) Phys Rev Lett 101:137201

    Article  Google Scholar 

  47. Yin YW, Burton JD, Kim YM, Borisevich AY, Pennycook SJ, Yang SM, Noh TW, Gruverman A, Li XG, Tsymbal EY, Li Q (2013) Nat Mater 12:397

    Article  Google Scholar 

  48. Babu SN, Malkinski L (2012) J Appl Phys 111:07D919

    Google Scholar 

Download references

Acknowledgments

The work was supported by funding from National Natural Science Foundation of China (Nos. 11104116, 50972049, 51172094 and 51072171), the Outstanding Young Scientists Foundation Grant of Shandong Province (No. BS2011CL003), 973 Program (Grant No. 2012CB326404) and the Doctoral Foundation of University of Jinan, China (No. 161220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, F., Dong, C. et al. Multiferroic properties of Bi3.15Nd0.85Ti3O12–NiFe2O4–Bi3.15Nd0.85Ti3O12 trilayer composite thin films prepared by a sol–gel process. J Sol-Gel Sci Technol 73, 469–475 (2015). https://doi.org/10.1007/s10971-014-3563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3563-6

Keywords

Navigation