Skip to main content
Log in

Forming extremely smooth ZnO thin film on silicon substrates for growth of large and well-aligned ZnO rods with the hydrothermal method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel zinc oxide (ZnO) thin films generally have non-uniform stripes. After annealing at high temperatures, these thin films are rough and granular. When ZnO rods are grown on such rough and non-uniform surface with the hydrothermal method, collimation, crystalline structure, and defect density are very poor. Here we explore a method to solve this problem. The ZnO thin film is first coated with an Au layer to prohibit the vertical extension of crystallization during the annealing period. As a result, the surface morphology of ZnO thin film is very flat and uniform after annealing. Afterwards, the ZnO rods are grown on the flat and uniform thin film, which gives rise to ZnO rods with very good collimation and crystalline structure. The extremely flat ZnO thin film even enables the fabrication of patterned ZnO rod arrays with regular shapes through lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chitara B, Panchakarla LS, Krupanidhi SB, Rao C (2011) UV photodetectors based on ZnO nanorods: role of defect-concentration. Jpn Appl Phys 50(10):0206

    Article  Google Scholar 

  2. Weintraub B, Chang S, Singamaneni S, Han WH, Choi YJ, Bae J, Kirkham M, Tsukruk VV, Deng Y (2008) Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission. Nanotechnology 19(43):435302

    Article  Google Scholar 

  3. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Arul NS, Agilan S, Balasundaraprabhu R (2011) Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot. J Mater Sci Mater Electron 22(11):1662–1666

    Article  Google Scholar 

  4. Chen H, Li W, Hou Q, Liu H, Zhu L (2011) Growth of three-dimensional ZnO nanorods by electrochemical method for quantum dots-sensitized solar cells. Electrochim Acta 56(24):8358–8364

    Article  Google Scholar 

  5. Yuan Z, Yu J, Wang N, Jiang Y (2011) Well-aligned ZnO nanorod arrays from diameter-controlled growth and their application in inverted polymer solar cell. J Mater Sci Mater Electron 22(11):1730–1735

    Article  Google Scholar 

  6. Lee YS, Jung YI, Noh BY, Park IK (2011) Emission pattern control of GaN-based light-emitting diodes with ZnO nanostructures. Appl Phys Express 4(11):112101

    Article  Google Scholar 

  7. Chen X, Man Ching Ng A, Fang F, Hang Ng Y, Djurisic AB, Lam Tam H, Wai Cheah K, Gwo S, Kin Chan W, Wai Keung Fong P (2011) ZnO nanorod/GaN light-emitting diodes: the origin of yellow and violet emission bands under reverse and forward bias. J Appl Phys 110(9):094512–094513

    Article  Google Scholar 

  8. Ng A, Chen X, Fang F, Hsu Y, Djurišić A, Ling C, Tam H, Cheah K, Fong P, Lui H (2010) Solution-based growth of ZnO nanorods for light-emitting devices: hydrothermal versus electrodeposition. Appl Phys B 100(4):851–858

    Article  Google Scholar 

  9. Kang DS, Lee HS, Han SK, Srivastava V, Babu ES, Hong SK, Kim MJ, Song JH, Song JH, Kim H (2011) Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition. J Alloys Compd 509(16):5137–5141

    Article  Google Scholar 

  10. Yang A, Wei H, Liu X, Song H, Zheng G, Guo Y, Jiao C, Yang S, Zhu Q, Wang Z (2009) Synthesis and characterization of well-aligned Zn1−xMgxO nanorods and film by metal organic chemical vapor deposition. J Cryst Growth 311(2):278–281

    Article  Google Scholar 

  11. Liu B, Hu Z, Che Y, Allenic A, Sun K, Pan X (2008) Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition. Appl Phys A 93(3):813–818

    Article  Google Scholar 

  12. Ram SG, Ravi G, Athimoolam A, Mahalingam T, Kulandainathan MA (2011) Aqueous chemical growth of free standing vertical ZnO nanoprisms, nanorods and nanodiskettes with improved texture co-efficient and tunable size uniformity. Appl Phys A 105(4):881–890

    Article  Google Scholar 

  13. Ting CC, Li CH, Kuo CY, Hsu CC, Wang HC, Yang MH (2010) Compact and vertically-aligned ZnO nanorod thin films by the low-temperature solution method. Thin Solid Films 518(15):4156–4162

    Article  Google Scholar 

  14. Lockman Z, Pet Fong Y, Wai Kian T, Ibrahim K, Razak KA (2010) Formation of self-aligned ZnO nanorods in aqueous solution. J Alloys Compd 493(1):699–706

    Article  Google Scholar 

  15. Su WY, Huang JS, Lin CF (2008) Improving the property of ZnO nanorods using hydrogen peroxide solution. J Cryst Growth 310(11):2806–2809

    Article  Google Scholar 

  16. Yin Y, Que W, Kam C (2010) ZnO nanorods on ZnO seed layer derived by sol–gel process. J Sol Gel Sci Technol 53(3):605–612

    Article  Google Scholar 

  17. Bai SN, Wu SC (2011) Synthesis of ZnO nanowires by the hydrothermal method, using sol–gel prepared ZnO seed films. J Mater Sci Mater Electron 22(4):339–344

    Article  Google Scholar 

  18. Segawa H, Sakurai H, Izumi R, Hayashi T, Yano T, Shibata S (2011) Low-temperature crystallization of oriented ZnO film using seed layers prepared by sol–gel method. J Mater Sci 46(10):3537–3543

    Article  Google Scholar 

  19. Xu L, Li X, Chen Y, Xu F (2011) Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl Surf Sci 257(9):4031–4037

    Article  Google Scholar 

  20. Lin JP, Wu JM (2008) The effect of annealing processes on electronic properties of sol–gel derived Al-doped ZnO films. Appl Phys Lett 92(13):134103

    Article  Google Scholar 

  21. Huang JS, Lin CF (2008) Influences of ZnO sol–gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. J Appl Phys 103(1):014304–014305

    Article  Google Scholar 

  22. Tan S, Sun X, Zhang X, Chua S, Chen B, Teo C (2006) Cluster coarsening in zinc oxide thin films by post-growth annealing. J Appl Phys 100(3):033502–033508

    Article  Google Scholar 

  23. Huang CJ, Yu RS, Chao WK, Shieu F-S (2010) Syntheses of acidic zinc colloids and morphological characterization on ZnO thin films. J Electrochem Soc 157(5):K103–K108

    Article  Google Scholar 

  24. Lin KM, Tsai P (2007) Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol–gel technique. Thin Solid Films 515(24):8601–8604

    Article  Google Scholar 

  25. Lin KM, Chen YY (2009) Improvement of electrical properties of sol–gel derived ZnO: Ga films by infrared heating method. J Sol Gel Sci Technol 51(2):215–221

    Article  Google Scholar 

  26. Tsay CY, Fan KS, Chen CY, Wu JM, Lei CM (2011) Effect of preheating process on crystallization and optical properties of sol–gel derived ZnO semiconductor thin films. J Electroceram 26(1–4):23–27

    Article  Google Scholar 

  27. Pakdel A, Ghodsi F (2011) Influence of drying conditions on the optical and structural properties of sol–gel-derived ZnO nanocrystalline films. Pramana 76(6):973–983

    Article  Google Scholar 

  28. Li J, Huang JH, Zhang YL, Yang Y, Song WJ, Li XM (2011) Effects of rapid thermal annealing in different ambients on structural, electrical, and optical properties of ZnO thin films by sol–gel method. J Electroceram 26(1–4):84–89

    Article  Google Scholar 

  29. Scherer GW (1997) Sintering of sol–gel films. J Sol Gel Sci Technol 8(1–3):353–363

    Google Scholar 

  30. Lee JC, Leu IC, Hon MH (2008) Growth of ZnO single crystals by annealing sol–gel-derived films with PDMS pre-pressing. Chem Lett 37(7):706–707

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Project of Aim for the Top University Project of the National Taiwan University with the contract number of 102R7607-1 and the support from the National Science Council, Taiwan, under the Project number of NSC 100-2221-E-002-158-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Fuh Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, YW., Su, HL., Lin, WH. et al. Forming extremely smooth ZnO thin film on silicon substrates for growth of large and well-aligned ZnO rods with the hydrothermal method. J Sol-Gel Sci Technol 70, 81–89 (2014). https://doi.org/10.1007/s10971-014-3277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3277-9

Keywords

Navigation