Skip to main content
Log in

Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Continuous NiTiO3 nanofibers have been successfully synthesized by a sol–gel assisted electrospinning method followed by calcination at 600 °C in air. These nanofibers were characterized for the morphological, structural and optical properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV–visible (UV–vis) diffuse reflectance spectroscopy (DRS). SEM results reveal that the obtained NiTiO3 nanofibers are 175 nm in diameter and several micrometers in length after annealing at 600 °C. The XRD analysis shows that the nanofibers possess highly crystalline structure with no impurity phase. In contrast, the NiTiO3 nanoparticles synthesized at the identical conditions by a sol–gel route have impurities including TiO2 and NiO. Moreover, the electrospun NiTiO3 nanofibers are endowed with an obvious optical absorbance in the visible range, demonstrating they have visible light photoresponse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. lijima S (1991) Helical microtubules of graphitic carbon. Nature 354(7):56–58

    Google Scholar 

  2. Lu Q, Liu S, Ren M, Song L, Zhao G (2011) Preparation and characterization of hollow In2O3/Co3O4 heterostructured microribbons by electrospinning process. J Sol-Gel Sci Technol 61(1):169–174

    Article  Google Scholar 

  3. Yang G, Zhang Q, Chang W, Yan W (2013) Fabrication of Cd1−xZnxS/TiO2 heterostructures with enhanced photocatalytic activity. J Alloys Compd 580:29–36

    Article  Google Scholar 

  4. Cheng C, Fan HJ (2012) Branched nanowires: synthesis and energy applications. Nano Today 7(4):327–343

    Article  Google Scholar 

  5. Van Huis MA, Figuerola A, Fang C, Beche A, Zandbergen HW, Manna L (2011) Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation. Nano Lett 11(11):4555–4561

    Article  Google Scholar 

  6. Krishnamoorthy T, Thavasi V, Subodh GM, Ramakrishna S (2011) A first report on the fabrication of vertically aligned anatase TiO2 nanowires by electrospinning: preferred architecture for nanostructured solar cells. Energy Environ Sci 4(8):2807–2812

    Article  Google Scholar 

  7. Zhang N, Zhang ZC, Zhou JG (2011) Synthesis of CaSnO3 nanofibers by electrospinning combined with sol–gel. J Sol-Gel Sci Technol 58(2):355–359

    Article  Google Scholar 

  8. Rettew RE, Allam NK, Alamgir FM (2011) Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO2 nanotubes. ACS Appl Mater Interfaces 3(2):147–151

    Article  Google Scholar 

  9. Dadvar S, Tavanai H, Dadvar H, Morshed M, Ghodsi FE (2011) UV-protection and photocatalytic properties of electrospun polyacrylonitrile nanofibrous mats coated with TiO2 nanofilm via sol–gel. J Sol-Gel Sci Technol 59(2):269–275

    Article  Google Scholar 

  10. Choi SW, Katoch A, Zhang J, Kim SS (2013) Electrospun nanofibers of CuO/SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens Actuators, B 176:585–591

    Article  Google Scholar 

  11. Ahn JY, Kim JH, Moon KJ, Kim JH, Lee CS, Kim MY, Kang JW, Kim SH (2013) Incorporation of multiwalled carbon nanotubes into TiO2 nanowires for enhancing photovoltaic performance of dye-sensitized solar cells via highly efficient electron transfer. Sol Energy 92:41–46

    Article  Google Scholar 

  12. Xu C, Guo J, Li Y, Seo HJ (2013) Enhanced luminescence of Ca2MgSi2O7:Eu2+ fibers by sol-gel assisted electrospinning. Opt Mater 35(5):893–897

    Article  Google Scholar 

  13. Agui A, Mizumaki M (2011) Intermetallic charge transfer and band gap of MTiO3 (M = Mn, Fe Co, and Ni) studied by O 1 s-edge X-ray emission spectroscopy. J Electron Spectrosc Relat Phenom 184(8–10):463–467

    Article  Google Scholar 

  14. Yuvaraj S, Nithya VD, Fathima KS, Sanjeeviraja C, Selvan GK, Arumugam S, Selvan RK (2013) Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis. Mater Res Bull 48(3):1110–1116

    Article  Google Scholar 

  15. Wang JL, Li YQ, Byon YJ, Mei SG, Zhang GL (2013) Synthesis and characterization of NiTiO3 yellow nano pigment with high solar radiation reflection efficiency. Powder Technol 235:303–306

    Article  Google Scholar 

  16. Ni Y, Wang X, Hong J (2009) Nickel titanate microtubes constructed by nearly spherical nanoparticles: preparation, characterization and properties. Mater Res Bull 44(8):1797–1801

    Article  Google Scholar 

  17. Shu X, He J, Chen D (2008) Visible-light-induced photocatalyst based on nickel titanate nanoparticles. Ind Eng Chem Res 47(14):4750–4753

    Article  Google Scholar 

  18. Tahir AA, Mazhar M, Hamid M, Wijayantha KG, Molloy KC (2009) Photooxidation of water by NiTiO3 deposited from single source precursor [Ni2Ti2(OEt)2(micro-OEt)6(acac)4] by AACVD. Dalton Trans 19:3674–3680

    Article  Google Scholar 

  19. Yuan PH, Fan CM, Ding GY, Wang YF, Zhang XC (2012) Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water. Int J Miner Metall Mater 19(4):372–376

    Article  Google Scholar 

  20. Lopes KP, Cavalcante LS, Simões AZ, Varela JA, Longo E, Leite ER (2009) NiTiO3 powders obtained by polymeric precursor method: synthesis and characterization. J Alloys Compd 468(1–2):327–332

    Article  Google Scholar 

  21. Gambhire AB, Lande MK, Kalokhe SB, Mandale AB, Patil KR, Gholap RS, Arbad BR (2008) Synthesis and characterizations of NiTiO3 nanoparticles prepared by the sol–gel process. Philos Mag Lett 88(6):467–472

    Article  Google Scholar 

  22. Mohammadi MR, Fray DJ (2010) Mesoporous and nanocrystalline sol–gel derived NiTiO3 at the low temperature: controlling the structure, size and surface area by Ni:Ti molar ratio. Solid State Sci 12(9):1629–1640

    Article  Google Scholar 

  23. Lin YJ, Chang YH, Yang WD, Tsai BS (2006) Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J Non-Cryst Solids 352(8):789–794

    Article  Google Scholar 

  24. Gupta V, Bamzai KK, Kotru PN, Wanklyn BM (2005) Mechanical characteristics of flux-grown calcium titanate and nickel titanate crystals. Mater Chem Phys 89(1):64–71

    Article  Google Scholar 

  25. Sadjadi MS, Mozaffari M, Enhessari M, Zare K (2010) Effects of NiTiO3 nanoparticles supported by mesoporous MCM-41 on photoreduction of methylene blue under UV and visible light irradiation. Superlattices Microstruct 47(6):685–694

    Article  Google Scholar 

  26. Sadjadi MS, Zare K, Khanahmadzadeh S, Enhessari M (2008) Structural characterization of NiTiO3 nanopowders prepared by stearic acid gel method. Mater Lett 62(21–22):3679–3681

    Article  Google Scholar 

  27. Gargori C, Cerro S, Galindo R, Monrós G (2010) In situ synthesis of orange rutile ceramic pigments by non-conventional methods. Ceram Int 36(1):23–31

    Article  Google Scholar 

  28. Zhou GW, Soo Kang Y (2006) Synthesis and characterization of the nickel titanate NiTiO3 nanoparticles in CTAB micelle. J Dispers Sci Technol 27(5):727–730

    Article  Google Scholar 

  29. Jacob KT, Saji VS, Reddy SNS (2007) Thermodynamic evidence for order–disorder transition in NiTiO3. J Chem Thermodyn 39(2):230–235

    Article  Google Scholar 

  30. Mazeina L, Picard YN, Prokes SM (2009) Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires. Cryst Growth Des 9(2):1164–1169

    Article  Google Scholar 

  31. Zhou L, Zhang SY, Cheng JC (1997) Optical absorptions of nanoscaled CoTiO3 and NiTiO3. Mater Sci Eng, B 49(2):117–122

    Article  Google Scholar 

  32. Lopes K, Cavalcante L, Simoes A, Gonçalves R, Escote M, Varela J, Longo E, Leite E (2008) NiTiO3 nanoparticles encapsulated with SiO2 prepared by sol–gel method. J Sol-Gel Sci Technol 45(2):151–155

    Article  Google Scholar 

  33. Qu Y, Zhou W, Ren Z, Du S, Meng X, Tian G, Pan K, Wang G, Fu H (2012) Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance. J Mater Chem 22(32):16471–16476

    Article  Google Scholar 

  34. Dharmaraj N, Park HC, Kim CK, Kim HY, Lee DR (2004) Nickel titanate nanofibers by electrospinning. Mater Chem Phys 87(1):5–9

    Article  Google Scholar 

  35. Liu Y, Yang Z, Yu H, Zhan S, Cai M, Yang X, Yu Y (2011) Facile fabrication of cerium niobate nano-crystalline fibers by electrospinning technology. J Sol-Gel Sci Technol 58(2):394–399

    Article  Google Scholar 

  36. Mu J, Chen B, Zhang M, Guo Z, Zhang P, Zhang Z, Sun Y, Shao C, Liu Y (2012) Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4(1):424–430

    Article  Google Scholar 

  37. Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204

    Article  Google Scholar 

  38. Kanjwal MA, Sheikh FA, Barakat NAM, Li X, Kim HY, Chronakis IS (2012) Zinc oxide’s hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci 258(8):3695–3702

    Article  Google Scholar 

  39. Zhang Y, Li J, Li Q, Zhu L, Liu X, Zhong X, Meng J, Cao X (2007) Preparation of CeO2–ZrO2 ceramic fibers by electrospinning. J Colloid Interface Sci 307(2):567–571

    Article  Google Scholar 

  40. Lang L, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl Mater Interfaces 5(5):1698–1703

    Article  Google Scholar 

  41. Varga T, Droubay TC, Bowden ME, Nachimuthu P, Shutthanandan V, Bolin TB, Shelton WA, Chambers SA (2012) Epitaxial growth of NiTiO3 with a distorted ilmenite structure. Thin Solid Films 520(17):5534–5541

    Article  Google Scholar 

  42. Lee SS, Bai H, Liu Z, Sun DD (2013) Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47(12):4059–4073

    Google Scholar 

  43. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J (2013) Zn1−xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal 3(5):882–889

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China (2011JDGZ15), Key Technologies Research and Development Program Jiangsu Province (SBE201038213) and Suzhou Research Program of Application Foundation (SYN201004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Chang, W. & Yan, W. Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning. J Sol-Gel Sci Technol 69, 473–479 (2014). https://doi.org/10.1007/s10971-013-3246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3246-8

Keywords

Navigation