Skip to main content
Log in

Effects of preparation conditions on the morphology and photoelectrochemical performances of electrospun WO3 nanofibers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of calcination temperature, precursor content, holding time and heating rate on the morphology of WO3 nanofibers (NFs) prepared by electrospinning technology have been investigated systematically. The X-ray diffraction (XRD) patterns using Rietveld method indicated that average crystalline sizes of nanoparticles of WO3 NFs increase with increasing calcination temperature. Also, the crystallinity of the nanofibers increases with the rise of calcination temperature. The suitable precursor contents and holding time facilitate the formation of continuous and uniform NFs. The samples prepared by different heating rates showed that the WO3 NFs fabricated with heating rate of 5 °C/min possess the smallest and uniform nanoparticle sizes. The X-ray diffraction (XRD) patterns using Rietveld method exhibited that different heating rate had no significant influence on the crystallinity of WO3 NFs. Additionally, the experimental results of photocurrent responses and electrochemical impedance indicate that the WO3 NFs prepared by different heating rate have different photoelectrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Liu, Y. Li, S. Arumugam, J. Tudor, S. Beeby, Mater. Today: Proc. 5, 13846–13854 (2018)

    Google Scholar 

  2. C. Yu, Z. Tong, S. Li, Y. Yin, Mater. Lett. 240, 161–164 (2019)

    Google Scholar 

  3. J. Choi, W. Kim, S. Hong, Nanoscale. 10, 4370–4376 (2018)

    Google Scholar 

  4. M. T. Zahoor, M. Ahmad, K. Maaz, S. Karim, K. Waheed, G. Ali, S. Hussain, S. Hussain, A. Nisar, Mater. Chem. Phys. 221, 250–257 (2019)

    Google Scholar 

  5. S. Yu, V. Ng, F. Wang, Z. Xiao, C. Li, L. Kong, W. Que, K. Zhou, J. Mater. Chem. A. 6, 9332–9367 (2018)

    Google Scholar 

  6. E. Limousin, N. Ballard, J. Asua, Prog. Org. Coat. 129, 69–76 (2019)

    Google Scholar 

  7. H. Jung, T. Pham, E.W. Shin, J. Alloys Compd. 788, 1084–1092 (2019)

    Google Scholar 

  8. X. Yang, Y. Liu, J. Li, Y. Zhang, Mater. Lett. 241, 76–79 (2019)

    Google Scholar 

  9. E. Mirzadeh, K. Akhbari, CrystEngComm 18, 7410–7424 (2016)

    Google Scholar 

  10. H. Wu, Y. Higaki, A. Takahara, Prog. Polym. Sci. 77, 95–117 (2018)

    Google Scholar 

  11. F. Dvorak, R. Zazpe, M. Krbal, H. Sopha, J. Prikryl, S. Ng, L. Hromadko, F. Bures, J. Macak, Appl. Mater. Today 14, 1–20 (2019)

    Google Scholar 

  12. W. Sukbua, J. Muangban, N. Triroj, P. Jaroenapibal, Proc. Eng. 47, 370 (2012)

    Google Scholar 

  13. K. Kumar, A. Priya, A. Arun, S. Hait, Anirban Chowdhury. Mater. Chem. Phys. 226, 106–112 (2019)

    Google Scholar 

  14. Y. Wu, Z. Liu, Y. Li, J.O. Chen, X. Zhu, Mater. Lett. 240, 47–50 (2019)

    Google Scholar 

  15. P. Dumrongrojthanath, A. Phuruangrat, S. Thipkonglas, B. Kuntalue, S. Thongtem, T. Thongtem, Superlattices Microstruct. 120, 241–249 (2018)

    ADS  Google Scholar 

  16. O.W. Kennedy, M.L. Coke, E.R. White, M.S.P. Shaffer, P.A. Warburton, Mater. Lett. 212, 51–53 (2018)

    Google Scholar 

  17. Y. Qu, P. Zhang, J. Liu, L. Zhao, X. Song, L. Gao, Mater. Chem. Phys. 226, 88–94 (2019)

    Google Scholar 

  18. K.T. Alali, J. Liu, Q. Liu, R. Li, Z. Li, P. Liu, K. Aljebawi, J. Wang, RSC Adv. 7, 11428–11438 (2017)

    Google Scholar 

  19. S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H. Kim, Mater. Sci. Eng. B 217, 36 (2017)

    Google Scholar 

  20. K.T. Alali, J. Liu, Q. Liu, R. Li, K. Aljebawi, J. Wang, Chem. Sel. 4, 5437–5458 (2019)

    Google Scholar 

  21. K.T. Alali, T. Liu, J. Liu, Q. Liu, Z. Li, H. Zhang, K. Aljebawi, J. Wang, RSC Adv. 6, 101626–101637 (2016)

    Google Scholar 

  22. K.T. Alali, T. Liu, J. Liu, Q. Liu, M. Fertassi, Z. Li, J. Wang, J. Alloys Compd. 702, 20–30 (2017)

    Google Scholar 

  23. K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Sens. Actuators B 252, 511–522 (2017)

    Google Scholar 

  24. Q. Liu, J. Zhu, L. Zhang, Y. Qiu, Renew. Sust. Energ. Rev. 81, 1825–1858 (2018)

    Google Scholar 

  25. J.V. Patil, S.S. Mali, A.S. Kamble, C.K. Hong, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 423, 641–674 (2017)

    ADS  Google Scholar 

  26. S.W. Choi, J.Y. Park, S.S. Kim, Chem. Eng. J. 172, 550–556 (2011)

    Google Scholar 

  27. H. Albetran, I.M. Low, Appl. Phys. A 122, 1044 (2016)

    ADS  Google Scholar 

  28. J.Y. Park, K. Asokan, S. Choi, S.S. Kim, Sens. Actuators B 152, 254–260 (2011)

    Google Scholar 

  29. L.H. Jin, Y. Bai, C.S. Li, Y. Wang, J.Q. Feng, L. Lei, G.Y. Zhao, P.X. Zhang, Appl. Surf. Sci. 440, 725729 (2018)

    Google Scholar 

  30. K.T. Alali, J. Liu, Q. Liu, R. Li, H. Zhang, K. Aljebawi, P. Liu, J. Wang, Inorg. Chem. Front. 4, 1219–1230 (2017)

    Google Scholar 

  31. Z.M. Tahir, A. Mashkoor, M. Khan, K. Shafqat, W. Khalid, A. Ghafar, Mater. Chem. Phys. 221, 250–257 (2019)

    Google Scholar 

  32. J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Mater. Chem. A 6, 3350 (2018)

    Google Scholar 

  33. H. Elbohy, K.M. Reza, S. Abdulkarim, Q. Qiao, Energy Fuels 2, 403 (2018)

    Google Scholar 

  34. K.T. Alali, J. Liu, K. Aljebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, J. Wang, J. Alloys Compd. 793, 31–41 (2019)

    Google Scholar 

  35. J. Zheng, Z. Haider, T. Van, A. Pawar, M. Kang, C. Kim, Y. Kang, CrystEngComm 17, 6070 (2015)

    Google Scholar 

  36. P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, Environ. Sci. Nano. 4, 539–557 (2017)

    Google Scholar 

  37. M. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Appl. Catal. B 186, 157–165 (2016)

    Google Scholar 

  38. G. Hai, J. Huang, L. Cao, Y. Jie, J. Li, X. Wang, G. Zhang, J. Alloys Compd. 690, 239–248 (2017)

    Google Scholar 

  39. Y. Tian, G. Hua, W. Xu, N. Li, M. Fang, L. Zhang, J. Alloys Compd. 509, 724–730 (2011)

    Google Scholar 

  40. C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, Y. Zhou, A.C.S. Appl, Mater. Interfaces. 7, 25716–25724 (2015)

    Google Scholar 

  41. R. Shi, Y. Zhang, X. Wang, Q. Ma, A. Zhang, P. Yang, Mater. Chem. Phys. 207, 114–122 (2018)

    Google Scholar 

  42. A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang, J. Ong, Surf. Coat. Technol. 200, 6111–6116 (2006)

    Google Scholar 

  43. Y.Komen Rothschild, J. Appl. Phys. 95, 6374–6380 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects from National Natural Science Foundation of China (51202090 and 51302106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruixia Shi or Ping Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Shang, Y., Shi, R. et al. Effects of preparation conditions on the morphology and photoelectrochemical performances of electrospun WO3 nanofibers. Appl. Phys. A 125, 724 (2019). https://doi.org/10.1007/s00339-019-3026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3026-6

Navigation