Skip to main content
Log in

Synthesis and characterization of europium-containing luminescent bioactive glasses and evaluation of in vitro bioactivity and cytotoxicity

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Luminescent europium-containing bioactive glasses (EuBG) based on the 58 %SiO2–33 %CaO–9 %P2O5 (in mass, %) system were synthesized using sol–gel technique by adding Eu2O3 in silica network. The structural, textural and optical properties, as well as in vitro bioactivity and biocompatibility of the material were characterized using various methods. The results show that all the Eu-containing bioactive glass materials exhibit an amorphous structure, large specific surface area, relatively uniform pore size distribution and high in vitro bioactivity, similar to the conventional sol–gel bioactive glass. More importantly, the addition of Eu2O3 endow the material with a luminescent property even after immersion in aqueous solution and the luminescent intensity increases with the increase of Eu2O3 content. The cytotoxicity assay indicates that pure EuBG extract significantly inhibit the growth of rat marrow mesenchymal stem cells (rMSCs), while 25 % concentration of the extract diluted by culture medium could significantly improve the proliferation of rMSCs in comparison with pure medium. According to the above results, the material presents excellent apatite-forming activity, luminescent property and biocompatibility, demonstrating their potential applications in the fields of bone regeneration and drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141

    Article  Google Scholar 

  2. Ogino M, Ohuchi F, Hench L (1980) Compositional dependence of the formation of calcium phosphate films on bioglass. J Biomed Mater Res 14(1):55–64

    Article  Google Scholar 

  3. Hench L (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  4. Greenspan D, Hench L (1976) Chemical and mechanical behavior of bioglass-coated alumina. J Biomed Mater Res 10(4):503–509

    Article  Google Scholar 

  5. Wilson J, Pigott G, Schoen F, Hench L (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15(6):805–817

    Article  Google Scholar 

  6. Xynos I, Edgar A, Buttery L, Hench L, Polak J (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465

    Article  Google Scholar 

  7. Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM (2000) Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67(4):321–329. doi:10.1007/s002230001134

    Article  Google Scholar 

  8. Xynos I, Edgar A, Buttery L, Hench L, Polak J (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55(2):151–157

    Article  Google Scholar 

  9. Hench L, West J (1990) The sol–gel process. Chem Rev 90(1):33–72

    Article  Google Scholar 

  10. Pereira M, Clark A, Hench L (1994) Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698

    Article  Google Scholar 

  11. Gough J, Jones J, Hench L (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25(11):2039–2046

    Article  Google Scholar 

  12. Vallet-Regí M, Rámila A (2000) New bioactive glass and changes in porosity during the growth of a carbonate hydroxyapatite layer on glass surfaces. Chem Mater 12(4):961–965

    Article  Google Scholar 

  13. Balas F, Arcos D, Pérez-Pariente J, Vallet-Regí M (2001) Textural properties of SiO2–CaO–P2O5 glasses prepared by the sol–gel method. J Mater Res 16(5):1345–1348

    Article  Google Scholar 

  14. Salinas A, Martin A, Vallet-Regí M (2002) Bioactivity of three CaO–P2O5–SiO2 sol–gel glasses. J Biomed Mater Res 61(4):524–532

    Article  Google Scholar 

  15. Arcos D, Pena J, Vallet-Regi M (2004) Textural evolution of a sol–gel glass surface in SBF. Key Eng Mater 254–256:27–30

    Article  Google Scholar 

  16. Ferreira JMF, Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS (2007) Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater 3(2):255–262

    Article  Google Scholar 

  17. El-Kheshen AA, Khaliafa FA, Saad EA, Elwan RL (2008) Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram Int 34(7):1667–1673

    Article  Google Scholar 

  18. Ferreira JMF, Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J (2008) An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater 24(10):1343–1351

    Article  Google Scholar 

  19. Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C 29(1):335–340

    Article  Google Scholar 

  20. Zhu Y, Li X, Yang J, Wang S, Gao H, Hanagata N (2011) Composition-structure-property relationships of the CaO-MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem 21(25):9208–9218

    Article  Google Scholar 

  21. Ma J, Chen C, Wang D, Meng X, Shi J (2010) In vitro degradability and bioactivity of mesoporous CaO–MgO–P2O5–SiO2 glass synthesized by sol–gel method. J Sol–Gel Sci Techn 54(1):69–76. doi:10.1007/s10971-010-2159-z

    Article  Google Scholar 

  22. Han PP, Wu CT, Chang J, Xiao Y (2012) The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 33(27):6370–6379. doi:10.1016/j.biomaterials.2012.05.061

    Article  Google Scholar 

  23. Piaoping Y, Zewei Q, Chunxia L, Xiaojiao K, Hongzhou L, Jun L (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29(32):4341–4347

    Article  Google Scholar 

  24. Piaoping Y, Zewei Q, Zhiyao H, Chunxia L, Xiaojiao K, Ziyong C, Jun L (2009) A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. Biomaterials 30(27):4786–4795. doi:10.1016/j.biomaterials.2009.05.038

    Article  Google Scholar 

  25. Ocaña M, Cantelar E, Cussó F (2011) A facile single-step procedure for the synthesis of luminescent Ln3+:YVO4 (Ln = Eu or Er + Yb)-silica nanocomposites. Mater Chem Phys 125(1–2):224–230. doi:10.1016/j.matchemphys.2010.09.011

    Article  Google Scholar 

  26. Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L, Vallet-Regi M (2013) Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater 9(1):4836–4844. doi:10.1016/j.actbio.2012.09.024

    Article  Google Scholar 

  27. Fan Y, Yang P, Huang S, Jiang J, Lian H, Lin J (2009) Luminescent and mesoporous europium-doped bioactive glasses (MBG) as a drug carrier. J Am Chem Soc 131(10):3462–3463

    Article  Google Scholar 

  28. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater 2(4):231–239. doi:10.1002/jab.770020403

    Article  Google Scholar 

  29. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  30. Roman J, Padilla S, Vallet-Regi M (2003) Sol–gel glasses as precursors of bioactive glass ceramics. Chem Mater 15(3):798–806

    Article  Google Scholar 

  31. Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel-glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2O5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O). J Biomed Mater Res Part A 66(1):110–119. doi:10.1002/jbm.a.10532

    Article  Google Scholar 

  32. Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54(11):2201–2218

    Article  Google Scholar 

  33. Lei B, Chen X, Wang Y, Zhao N, Du C, Zhang L (2009) Acetic acid derived mesoporous bioactive glasses with an enhanced in vitro bioactivity. J Non-Cryst Solids 355(52–54):2583–2587

    Article  Google Scholar 

  34. Binnemans K, Van Deun R, Görller-Walrand C, Adam JL (1998) Spectroscopic properties of trivalent lanthanide ions in fluorophosphate glasses. J Non-Cryst Solids 238(1–2):11–29

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project of the National Natural Science Foundation of China (Grant No. 50830101), National Natural Science Foundation of China (Grant Nos. 51072055, 51172073, 51202069), the National 973 project of China (2011CB606204), Research Fund for the Doctoral Program of Higher Education of China (20110172110002), the Fundamental Research Funds for the Central University (2012ZP0001), the Fundamental Research Funds for the Central Universities (2013ZM0043) and the Zhejiang Provincial Natural Science Foundation of China (Z2080985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, G., Chen, X., Mao, C. et al. Synthesis and characterization of europium-containing luminescent bioactive glasses and evaluation of in vitro bioactivity and cytotoxicity. J Sol-Gel Sci Technol 69, 250–259 (2014). https://doi.org/10.1007/s10971-013-3209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3209-0

Keywords

Navigation