Skip to main content

Advertisement

Log in

Structural and luminescent properties of Er3+ and Tb3+-doped sol–gel-based bioactive glass powders and electrospun nanofibers

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, sol–gel-based erbium (Er3+), terbium (Tb3+) and Er3+: Tb3 co-doped 1393 bioactive glass powders and electrospun nanofibers were prepared. Structural and morphological properties of the bioactive glasses as well as the photoluminescence characteristics were investigated in detail. The median particle size and average diameter of the prepared glass powders and fibers were in the range of ~ 1.5–3.5 μm and 280–660 nm, respectively. The steady-state photoluminescence and decay kinetics of the samples were investigated under excitation (374 nm) where only Er3+ and Tb3+ ions close to Si nanoclusters can be excited. All the samples prepared in the study exhibited bright green emission upon excitation at 374 nm. Results showed that the dopant concentration and the sample morphology have significant influence on the photoluminescence and decay properties of the glasses. Sol–gel-derived bioactive glass particles exhibited stronger emission intensity, whereas electrospun nanofibers showed extended decay times. In vitro bioactivity experiments revealed that Er3+ and Tb3+ doping did not inhibit the conversion of the glass samples to hydroxyapatite treated in simulated body fluid for 30 days. It was concluded that Er3+ and Tb3+-containing 1393 bioactive glasses have a potential to be used in tissue engineering applications as well as bioimaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Lu H, Chen F, Xi P, Chen B, Huang L, Cheng J, Shao C, Wang J, Bai D, Zeng Z (2011) Biocompatible fluorescent hydroxyapatite: synthesis and live cell imaging applications. J Phys Chem C 115:18538–18544. https://doi.org/10.1021/jp206843w

    Article  CAS  Google Scholar 

  2. Neacsu IA, Stoica AE, Vasile BS, Andronescu E (2019) Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials 9(2):239. https://doi.org/10.3390/nano9020239

    Article  CAS  Google Scholar 

  3. Grabmaier BC (1994) Luminescent materials for medical application. J Lumin 60–61:967–970. https://doi.org/10.3390/nano9020239

    Article  CAS  Google Scholar 

  4. Gerhard L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910. https://doi.org/10.3390/ma3073867

    Article  CAS  Google Scholar 

  5. Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141. https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  6. Hench LL, Wilson J (1984) Surface active biomaterials. Science 226:630–636. https://doi.org/10.1126/science.6093253

    Article  CAS  Google Scholar 

  7. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  Google Scholar 

  8. Brink M, Turunen T, Happonen R, Yli-Urpo A (1997) Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Mater Sci Mater Med 37:114–121. https://doi.org/10.1002/(sici)1097-4636(199710)37:1<114::aid-jbm14>3.0.co;2-g

    Article  CAS  Google Scholar 

  9. Fan Y, Yang P, Huang S, Jiang J, Lian H, Lin J (2009) Luminescent and mesoporous europium-doped bioactive glasses (MBG) as a drug carrier. Phys Chem C 113(18):7826–7830. https://doi.org/10.1021/jp900515x

    Article  CAS  Google Scholar 

  10. Li G, Liang G, Zhao S, Ma K, Feng W, Zhou D, Liu X (2014) Synthesis and characterization of porous luminescent glass ceramic scaffolds containing europium for bone tissue engineering. Adv Appl Ceram. 114(3):164–174. https://doi.org/10.1179/1743676114Y.000000021

    Article  Google Scholar 

  11. Saarinen M, Nommeots-Nomm A, Hokka M, Laurila J, Norrbod I, Lastusaarid M, Massera J, Petit L (2018) Persistent luminescent particles containing bioactive glasses: Prospect toward tracking in-vivo implant mineralization using biophotonic ceramics. J Eur Ceram Soc 38:287–295. https://doi.org/10.1016/j.jeurceramsoc.2017.08.024

    Article  CAS  Google Scholar 

  12. Ganjali MR, Gupta KV, Faridbod GF, Norouzi P (2016) Lanthanides series determination by various analytical methods. Chapter 2, Applications of the lanthanide series in human life. pp 37–58. https://doi.org/10.1016/B978-0-12-804704-0.00002-5

  13. Patnaik P (2002) Handbook of inorganic chemicals. McGraw-Hill

    Google Scholar 

  14. Alshemary AZ, Akram M, Goh Y-F, Abdul Kadir MR, Abdolahi A, Hussain R (2015) Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J Alloys Compd 645:478–486. https://doi.org/10.1016/j.jallcom.2015.05.064

    Article  CAS  Google Scholar 

  15. Pham V-H, Van HN, Tam PD, Ha HNT (2016) A novel 1540 nm light emission from erbium doped hydroxyapatite/-tricalcium phosphate through co-precipitation method. Mater Lett 167:145–147. https://doi.org/10.1016/j.matlet.2016.01.002

    Article  CAS  Google Scholar 

  16. Mondal S, Nguyen VT, Park S, Choi J, Tran LH, Yi M, Shin JH, Lee C-Y, Oh J (2020) Bioactive, luminescent erbium-doped hydroxyapatite nanocrystals for biomedical applications. Ceram Int 46(10):16020–16031. https://doi.org/10.1016/j.ceramint.2020.03.152

    Article  CAS  Google Scholar 

  17. Li Q, Xing M, Chen Z, Wang X, Zhao C, Qiu J, Jianding Yu, Chang J (2016) Er3+/Yb3+ co-doped bioactive glasses with up-conversion luminescence prepared by containerless processing. Ceram Int 42(11):13168–13175. https://doi.org/10.1016/j.ceramint.2016.05.108

    Article  CAS  Google Scholar 

  18. Hammond CR (2000) The elements in handbook of chemistry and physics. CRC Press

    Google Scholar 

  19. Wang X, Zhang Y, Lin C, Zhong W (2017) Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: in vitro hydroxyapatite formation and drug delivery. Colloids Surf B 160:406–415. https://doi.org/10.1016/j.colsurfb.2017.09.051

    Article  CAS  Google Scholar 

  20. Qiao Y, Li Y-X, Yin H-R, Liu P, Li S-Y, Zhang P (2015) Preparation and luminescent properties of terbium-doped hydroxyapatite. Chin J Lumin 36(1):63-68. https://doi.org/10.3788/fgxb20153601.0063

    Article  CAS  Google Scholar 

  21. Deliormanlı AM, Yıldırım M (2016) Sol-gel synthesis of 13–93 bioactive glass powders containing therapeutic agents. J Aust Ceram Soc 52(2):9–19

    Google Scholar 

  22. Deliormanlı AM (2015) Preparation in vitro mineralization and osteoblast cell response of 13–93 bioactive glass nanofibers for biomedical applications. Mater Sci Eng C Mater Biol Appl 53:262–271. https://doi.org/10.1016/j.msec.2015.04.037

    Article  CAS  Google Scholar 

  23. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734. https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  24. Silva AMB, Queiroz CM, Agathopoulos S, Correia RN, Fernandes MHV, Oliveira JM (2011) Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR. J Mol Struct 986:16–21. https://doi.org/10.1016/j.molstruc.2010.11.023

    Article  CAS  Google Scholar 

  25. Wong J, Angell CA (1976) Glass structure by spectroscopy. Marcel Dekker, New York

    Google Scholar 

  26. Nariyal RK, Kothari P, Bisht B (2014) FTIR measurements of SiO2 glass prepared by sol-gel technique. Chem Sci Trans 3(3):1064–1066. https://doi.org/10.7598/cst2014.816

    Article  CAS  Google Scholar 

  27. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds: part A—theory and applications in inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  28. Carter CB, Norton MG (2013) Ceramic materials: science and engineering. Complex crystal and glass structures (Chap. 7). Springer, pp 103–122. https://doi.org/10.1007/978-1-4614-3523-5_7

    Book  Google Scholar 

  29. Xu GQ, Zheng ZX, Tang WM, Wu YC (2007) Multi-peak behavior of photoluminescence of silica particles heat-treated in hydrogen at elevated temperature. J Lumin 126:43–47. https://doi.org/10.1016/j.jlumin.2006.05.001

    Article  CAS  Google Scholar 

  30. Ehrt D, Ebeling P (2003) Radiation defects in borosilicate glasses. Glass Technol 44(2):46–49

    CAS  Google Scholar 

  31. de Dood MJA, Slooff LH, Polman A, Moroz A, van Blaaderen A (2001) Modified spontaneous emission in erbium-doped SiO2 spherical colloids. Appl Phys Lett 79(22):3585–3587. https://doi.org/10.1063/1.1419033

    Article  CAS  Google Scholar 

  32. Said Mahraz ZA, Sahar MR, Ghoshal SK, Reza Dousti M (2013) Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. J Lumin 144:139–145. https://doi.org/10.1016/j.jlumin.2013.06.050

    Article  CAS  Google Scholar 

  33. Lo Savio R, Miritello M, Cardile P, Priolo F (2009) Concentration dependence of the Er3+ visible and infrared luminescence in Y2-xErxO3 thin films on Si. J Appl Phys 106:043512. https://doi.org/10.1063/1.3195077

    Article  CAS  Google Scholar 

  34. Ehrt D (2011) Photoactive glasses and glass ceramics. IOP Conf Ser Mater Sci Eng 21:012001

    Article  Google Scholar 

  35. Wojdak M, Jayatilleka H, Shah M, Kenyon AJ, Gourbilleau F, Rizk R (2013) Modification of erbium photoluminescence decay rate due to ITO layers on thin films of SiO2: Er doped with Si-nanoclusters. J Lumin 136:407–410. https://doi.org/10.1016/j.jlumin.2012.11.042

    Article  CAS  Google Scholar 

  36. Sun XY, Huang SM, Gu M, Gao QC, Gong XS, Ye ZP (2010) Enhanced Tb3+ luminescence by non–radiative energy transfer from Gd3+ in silicate glass. Phys B 405:569–572. https://doi.org/10.1016/j.physb.2009.09.067

    Article  CAS  Google Scholar 

  37. Sun XY, Yu XG, Wang WF, Li YN, Zhang ZJ, Zhao JT (2013) Luminescent properties of Tb3+–activated B2O3–GeO2–Gd2O3 scintillating glasses. J Non-Cryst Solids 379:127–130. https://doi.org/10.1016/j.jnoncrysol.2013.08.002

    Article  CAS  Google Scholar 

  38. Sun XY, Jiang DG, Wang WF, Cao CY, Li YN, Zhen GT, Wang H, Yang XX, Chen HH, Zhang ZJ, Zhao JT (2013) Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions. Nucl Inst Methods Phys Res A 716:90–95. https://doi.org/10.1016/j.nima.2013.03.036

    Article  CAS  Google Scholar 

  39. Kik PG, Polman A (2001) Exciton–erbium energy transfer in Si nanocrystal-doped SiO2. Mater Sci Eng B 81(1–3):3–8. https://doi.org/10.1016/S0921-5107(00)00667-X

    Article  Google Scholar 

  40. Bei J, Qian G, Liang X, Yuan S, Yang Y, Chen G (2007) Optical properties of Ce3+-doped oxide glasses and correlations with optical basicity. Mater Res Bull 42:1195–1200. https://doi.org/10.1016/j.materresbull.2006.10.020

    Article  CAS  Google Scholar 

  41. Yao Y, Liu L, Zhang Y, Chen D, Fang Y, Zhao G (2016) Optical properties of Ce3+ doped fluorophosphates scintillation glasses. Opt Mater 51:94–97. https://doi.org/10.1016/j.optmat.2015.11.026

    Article  CAS  Google Scholar 

  42. Lisitsyn VM, Valiev DT, Tupitsyna IA, Polisadova EF, Oleshko VI, Lisitsyna LA, Andryuschenko LA, Yakubovskaya AG, Vovk OM (2014) Effect of particle size and morphology on the properties of luminescence in ZnWO4. J Lumin 153:130–135. https://doi.org/10.1016/j.jlumin.2014.03.024

    Article  CAS  Google Scholar 

  43. Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R (2001) The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J Phys Chem B 105(5):948–953. https://doi.org/10.1021/jp002778c

    Article  CAS  Google Scholar 

  44. Kim Y, Kang S (2011) Effect of particle size on photoluminescence emission intensity in ZnO. Acta Mater 59(8):3024–3031. https://doi.org/10.1016/j.actamat.2011.01.042

    Article  CAS  Google Scholar 

  45. Kislyuk V, Strilchuk G, Lozovski V, Osipyonok M, Lytvyn P (2004) Influence of particle size on luminescence spectra. Progr Colloid Polym Sci 125:24–26. https://doi.org/10.1007/978-3-540-45119-8_4

    Article  CAS  Google Scholar 

  46. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  Google Scholar 

  47. Jain A, Blum C, Subramaniam V (2009) Advances in biomedical engineering, Chapter 4, Fluorescence lifetime spectroscopy and imaging of visible fluorescent proteins. pp 147–176. https://doi.org/10.1016/B978-0-444-53075-2.00004-6

    Article  Google Scholar 

  48. Larrañaga A, Ramos D, Amestoy H, Zuza E, Sarasua J-R (2015) Coating of bioactive glass particles with mussel-inspired polydopamine as a strategy to improve the thermal stability of poly(L-lactide)/bioactive glass composites. RSC Adv 5:65618–65626. https://doi.org/10.1039/C5RA09495J 

    Article  Google Scholar 

  49. Miola M, Verné E, Ciraldo FE, Cordero-Arias L, Boccaccini AR (2015) Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr. Front Bioeng Biotechnol 3:159. https://doi.org/10.3389/fbioe.2015.00159

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of The Scientific and Technological Research Council of Turkey (TUBITAK), Grant No: 119M934, is gratefully acknowledged. Photoluminescence characterizations were performed at Dokuz Eylul University, Center for Production and Applications of Electronic Materials (EMUM). The SEM and XRD analysis were performed at Manisa Celal Bayar University—Applied Science and Research Center (DEFAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin M. Deliormanlı.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliormanlı, A.M., Rahman, B., Oguzlar, S. et al. Structural and luminescent properties of Er3+ and Tb3+-doped sol–gel-based bioactive glass powders and electrospun nanofibers. J Mater Sci 56, 14487–14504 (2021). https://doi.org/10.1007/s10853-021-06203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06203-7

Navigation