Skip to main content
Log in

Synthesis of TiO2–SiO2 aerogel via ambient pressure drying: effects of sol pre-modification on the microstructure and pore characteristics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2–SiO2 composite aerogels were prepared via ambient pressure drying by sol–gel and surface modification for both the sol and gel samples. The organosilane reagents of decamethyltetrasiloxane (DMTSO)/trimethylchlorosilane (TMCS) and hexamethyldisiloxane (HMDSO)/TMCS were introduced into the TiO2–SiO2 composite sol for pre-modification respectively, and subsequently the TMCS/hexane solution was used for surface modification of the obtained TiO2–SiO2 composite gel. The effects of sol pre-modification on the microstructure and pore characteristics of TiO2–SiO2 composite aerogels were investigated. The results indicate that HMDSO/TMCS coupling reagents is more appropriate for the pre-modification of TiO2–SiO2 composite sol than the DMTSO/TMCS reagents. The best volume ratio of HMDSO/TMCS/composite sol for preparing mesoporous TiO2–SiO2 composite aerogels is in the range of 1:0.33:10–1:1.0:10, with which the specific surface area and pore volume of the obtained TiO2–SiO2 composite aerogels are 492–645 m2/g and 2.63–2.85 m3/g, respectively. The results of adsorption and photocatalytic degradation of rhodamine B show that the as-prepared TiO2–SiO2 composite aerogels have higher adsorption/photocatalysis. Particularly, the as-prepared TiO2–SiO2 composite aerogels with HMDSO/TMCS showed prominent adsorption capability with the adsorption rate attaining to 89.4 % within 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kartal AM, Erkey C (2010) J Supercrit Fluids 53:115–120

    Article  Google Scholar 

  2. Shi F, Wang L, Liu J (2006) Mater Lett 60:3718–3722

    Article  Google Scholar 

  3. Shi F, Wang L, Liu J, Zeng M (2007) J Mater Sci Technol 23:402–406

    Google Scholar 

  4. Jung IK, Gurav JL, Ha TJ (2012) Ceram Int 38S:S105–S108

    Article  Google Scholar 

  5. Qin G, Yao Y, Wei W, Zhang T (2013) Appl Surf Sci 280:806–811

    Article  Google Scholar 

  6. Rodrigues D, Rocha-Santos TAP, Freitas AC, Gomes AMP, Duarte AC (2013) Sci Total Environ 461–462:126–138

    Article  Google Scholar 

  7. Suchithra PS, Vazhayal L, Peer Mohamed A, Ananthakumar S (2012) Chem Eng J 200–201:589–600

    Article  Google Scholar 

  8. Ramadan H, Ghanem A, El-Rassy H (2010) Chem Eng J 159:107–115

    Article  Google Scholar 

  9. Liu GQ, Yang R, Li M (2010) J Non Cryst Solids 356:250–257

    Article  Google Scholar 

  10. Gorle BSK, Smirnova I, Mchugh MA (2009) J Supercrit Fluids 48:85–92

    Article  Google Scholar 

  11. Suzana Š, Zoran N, Željko K (2009) J Hazard Mater 165:1114–1118

    Article  Google Scholar 

  12. Suzana Š, Zoran N, Željko K (2007) J Colloid Interface Sci 310:362–368

    Article  Google Scholar 

  13. Peiris Weerasinghe MN, Klabunde KJ (2013) J Photochem Photobiol A Chem 254:62–70

    Article  Google Scholar 

  14. Wang HL, Liang WZ, Jiang WF (2011) Mater Chem Phys 130:1372–1379

    Article  Google Scholar 

  15. Cao S, Yeung KL, Yue PL (2006) Appl Catal B Environ 68:99–108

    Article  Google Scholar 

  16. Shimoyama Y, Ogata Y, Ishibashi R, Iwai Y (2010) Chem Eng Res Des 88:1427–1431

    Article  Google Scholar 

  17. Schwertfeger F, Frank D, Schmidt M (1998) J Non Cryst Solids 225:24–29

    Article  Google Scholar 

  18. Liang Luo, Cooper AT, Fan M (2009) J Hazard Mater 161:175–182

    Article  Google Scholar 

  19. Lee SL, Nur H, Wei SC (2011) Appl Mech Mater 110–116:457–464

    Article  Google Scholar 

  20. Aravind PR, Shajesh P, Mukundan P, Warrier KGK (2009) J Solgel Sci Technol 52:328–334

    Article  Google Scholar 

  21. Shao GN, Hilonga A, Kim YN, Kim JK, Elineema G, Quang DV, Jeon SJ, Kim HT (2012) Chem Eng J 198–199:122–129

    Article  Google Scholar 

  22. Ingale SV, Sastry PU, Wagh PB, Tripathi AK, Rao R, Tewari R, Rao PT, Patel RP, Tyagi AK, Gupta SC (2012) Mater Chem Phys 135:497–502

    Article  Google Scholar 

  23. Liu M, Gan L (2008) Colloids Surf A Physicochem Eng Aspects 317:490–495

    Article  Google Scholar 

  24. Aravind PR, Shajesh P, Mukundan P, Warrier GK (2009) J Solgel Sci Technol 52:328–334

    Article  Google Scholar 

  25. Liu JX, Leng XW, Shi F, Dong XL, Zhai B, Li YG (2010) J Chin Soc 38:2296–2302 (in Chinese)

    Google Scholar 

  26. Leng XW, Liu JX, Shi F, Yin S, Sato T (2009) Chin J Inorg Chem 25:1791–1796 (in Chinese)

    Google Scholar 

  27. Liu JX, Bai LN, Shi F, Hu ZQ, Jiang YY, Zhao T (2012) Adv Mater Res 534:101–105

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51278074), the Project of Dalian Science & Technology Foundation (2007J23JH014), and Dalian City Construction Science & Technology Project (20111228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JX., Shi, F., Bai, LN. et al. Synthesis of TiO2–SiO2 aerogel via ambient pressure drying: effects of sol pre-modification on the microstructure and pore characteristics. J Sol-Gel Sci Technol 69, 93–101 (2014). https://doi.org/10.1007/s10971-013-3190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3190-7

Keywords

Navigation