Skip to main content
Log in

Synthesis of α-alumina from a less common raw material

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A nanostructured α-Al2O3 with particle size lower than 100 nm was obtained from a hazardous waste generated in slag milling process by the aluminium industry. The route developed to synthesize alumina consisted of two steps: in the first one, a precursor of alumina, boehmite, γ-AlOOH was obtained by a sol–gel method. In the second step, the alumina was obtained by calcination of the precursor boehmite (xerogel). Calcination in air was performed at two different temperatures, i.e. 1,300 and 1,400 °C, to determine the influence of this parameter on the quality of resulting alumina. X-Ray diffraction patterns and transmission electron microscopy images of calcined powers revealed beside corundum the presence of transition aluminas and some rest of amorphous phase in the sample prepared at 1,300 °C. The increase of the calcinations temperature to 1,400 °C favors the formation of an almost single-phase corundum powder. The transition of θ- to α-Al2O3 was followed by means of infrared spectroscopy, since it is accompanied by the disappearance of the IR band frequencies associated with tetrahedral sites (AlO4 sites), giving rise to a spectrum dominated by Al3+ ions in octahedral sites (AlO6) characteristic of corundum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sanchez-Valente J, Bokhimi X, Toledo JA (2004) Synthesis and catalytic properties of nanostructured aluminas obtained by sol–gel method. Appl Catal Gen 264(2):175–181. doi:10.1016/j.apcata.2003.12.041

    Article  CAS  Google Scholar 

  2. Souza-Santos P, Souza-Santos H, Toledo SP (2000) Standard transition aluminas. Electron microscopy studies. Mater Res 3(4):11. doi:10.1590/S1516-14392000000400003

    Google Scholar 

  3. Boumaza A, Favaro L, Ledion J, Sattonnay G, Brubach JB, Berthet P, Huntz AM, Roy P, Tetot R (2009) Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem 182(5):1171–1176. doi:10.1016/j.jssc.2009.02.006

    Article  CAS  Google Scholar 

  4. Murali KR, Thirumoorthy P (2010) Characteristics of sol–gel deposited alumina films. J Alloy Compd 500(1):93–95. doi:10.1016/j.jallcom.2010.03.219

    Article  CAS  Google Scholar 

  5. Li JS, Wang XY, Wang LJ, Hao YX, Huang YL, Zhang Y, Sun XY, Liu XD (2006) Preparation of alumina membrane from aluminium chloride. J Membr Sci 275(1–2):6–11. doi:10.1016/j.memsci.2005.08.011

    Article  CAS  Google Scholar 

  6. Parida KM, Pradhan AC, Das J, Sahu N (2009) Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater Chem Phys 113(1):244–248. doi:10.1016/j.matchemphys.2008.07.076

    Article  CAS  Google Scholar 

  7. Kim SM, Lee YJ, Jun KW, Park JY, Potdar HS (2007) Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Mater Chem Phys 104(1):56–61. doi:10.1016/j.matchemphys.2007.02.044

    Article  CAS  Google Scholar 

  8. Wang YH, Wang J, Shen MQ, Wang WL (2009) Synthesis and properties of thermostable gamma-alumina prepared by hydrolysis of phosphide aluminum. J Alloy Compd 467(1–2):405–412. doi:10.1016/j.jallcom.2007.12.007

    Article  CAS  Google Scholar 

  9. Wang XH, Lu GZ, Guo Y, Wang YS, Guo YL (2005) Preparation of high thermal-stabile alumina by reverse microemulsion method. Mater Chem Phys 90(2–3):225–229. doi:10.1016/j.matchemphys.2004.11.012

    Article  CAS  Google Scholar 

  10. Passos A, Martins L, Pulcinelli S, Santilli C (2012) Design of hierarchical porous aluminas by using one-pot synthesis and different calcination temperatures. J Sol-Gel Sci Technol. doi:10.1007/s10971-011-2674-6

  11. Schinkel G, Garrn I, Frank B, Gernert U, Schubert H, Schomacker R (2008) Fabrication of alumina ceramics from powders made by sol-gel type hydrolysis in microemulsions. Mater Chem Phys 111(2–3):570–577. doi:10.1016/j.matchemphys.2008.05.032

    Article  CAS  Google Scholar 

  12. Gocmez H, Ozcan O (2008) Low temperature synthesis of nanocrystalline alpha-Al2O3 by a tartaric acid gel method. Mater Sci Eng A Struct Mater Prop Microstruct Process 475(1–2):20–22. doi:10.1016/j.msea.2006.12.147

    Article  Google Scholar 

  13. Martin MI, Rabanal ME, Gomez LS, Torralba JM, Milosevic O (2008) Microstructural and morphological analysis of nanostructured alumina particles synthesized at low temperature via aerosol route. J Eur Ceram Soc 28(13):2487–2494. doi:10.1016/j.jeurceramsoc.2008.03.019

    Article  CAS  Google Scholar 

  14. Ibrahim DM, Abu-Ayana YM (2009) Preparation of nano alumina via resin synthesis. Mater Chem Phys 113(2–3):579–586. doi:10.1016/j.matchemphys.2008.07.113

    Article  CAS  Google Scholar 

  15. Nakano H, Makino Y, Sano S (2008) Microstructure of alumina produced by millimeter-wave heating. J Alloy Compd 457(1–2):485–489. doi:10.1016/j.jallcom.2007.03.007

    Article  CAS  Google Scholar 

  16. López-Delgado A, Tayibi H (2012) Can hazardous waste become a raw material? The case study of an aluminium residue: a review. Waste Manag Res 30(5):474–484. doi:10.1177/0734242x11422931

    Article  Google Scholar 

  17. Gonzalo-Delgado L, López-Delgado A, López FA, Alguacil FJ, López-Andrés S (2011) Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag Res 29(2):127–134. doi:10.1177/0734242x10378330

    Article  CAS  Google Scholar 

  18. Rinaldi R, Schuchardt U (2005) On the paradox of transition metal-free alumina-catalyzed epoxidation with aqueous hydrogen peroxide. J Catal 236(2):335–345. doi:10.1016/j.jcat.2005.10.007

    Article  CAS  Google Scholar 

  19. Alphonse P, Courty M (2005) Structure and thermal behavior of nanocrystalline boehmite. Thermochim Acta 425(1–2):75–89. doi:10.1016/j.tca.2004.06.009

    Article  CAS  Google Scholar 

  20. Jayaraman V, Periaswami G, Kutty TRN (1998) Influence of the preparative conditions on the precursor phases formed during the synthesis of beta-alumina by the wet chemical gel to crystallite conversions. Mater Chem Phys 52(1):46–53. doi:10.1016/s0254-0584(98)80005-9

    Article  CAS  Google Scholar 

  21. Ram S (2001) Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH) center dot alpha H2O bulk crystals. Infrared Phys Technol 42(6):547–560. doi:10.1016/s1350-4495(01)00117-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the company Recuperaciones y Reciclajes Roman S.L. (Fuenlabrada, Madrid, Spain) for supplying the waste and CSIC for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora López-Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Delgado, A., Fillali, L., Jiménez, J.A. et al. Synthesis of α-alumina from a less common raw material. J Sol-Gel Sci Technol 64, 162–169 (2012). https://doi.org/10.1007/s10971-012-2843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2843-2

Keywords

Navigation