Skip to main content
Log in

Transformation kinetics of θ- to α-phase of alumina powders prepared from different alumina salts by chemical processing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to produce nanosized alumina powders from two different aluminum salts (AlCl3 and AlNO3.9H2O) by precipitation method and to investigate transformation kinetics of α-Al2O3 crystallization obtained from quantitative DTA curves via Kissinger–Akahira–Sunose (KAS) method. Precipitates are dried at 80 °C for 24 h and then calcinated at 1200 and 1300 °C for 1 h. Dried powders have bayerite [Al(OH)3] and calcinated powders have theta- (θ) and alpha (α)-alumina phases which confirmed by XRD analysis, and the crystallite size of powders determined by Scherrer equation is about 30 nm for dried powders and ranged from approximately 15–35 nm for calcinated powders. Scanning electron microscopy studies revealed that the morphology and size of powders precipitated from two different salts are similar to each other, and powders contain mainly sub-micrometer-sized particles and close to spherical form. Activation energy values determined by KAS equation range from 717 to 411 kJ mol−1 for powders produced from aluminum nitrate salt and from 844 to 476 kJ mol−1 for powders produced from aluminum chloride salt depending on the transformation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mirjalili F, Hasmaliza M, Chuah Abdullah L. Size-controlled synthesis of nano α-alumina particles through the sol-gel method. Ceram Int. 2010;36:1253–7.

    Article  CAS  Google Scholar 

  2. Calvié E, Joly-Pottuz L, Esnouf C, Clément P, Garnier V, Chevalier J, Jorand Y, Malchère A, Epicier T, Masenelli-Varlot K. Real time TEM observation of alumina ceramic nano-particles during compression. J Eur Ceram Soc. 2012;32:2067–71.

    Article  Google Scholar 

  3. Karagedov GR, Myz AL. Preparation and sintering pure nanocrystalline α-alumina powder. J Eur Ceram Soc. 2012;32:219–25.

    Article  CAS  Google Scholar 

  4. Wen H, Yen F. Growth characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation. J Cryst Growth. 2000;208:696–708.

    Article  CAS  Google Scholar 

  5. Palmero P, Barbara B, Lomello F, Garrone E, Montanaro L. Role of the dispersion route on the phase transformation of a nano-crystalline transition alumina. J Therm Anal Calorim. 2009;97:223–9.

    Article  CAS  Google Scholar 

  6. Baca L, Plewa J, Pach L, Opfermann J. Kinetic analysis crystallization of α-Al2O3 by dynamic DTA technique. J Therm Anal Calorim. 2001;66:803–13.

    Article  CAS  Google Scholar 

  7. Ipek M, Zeytin S, Bindal C. Effect of ZrO2 on phase transformation of Al2O3. Ceram Int. 2010;36:1159–63.

    Article  CAS  Google Scholar 

  8. Li J, Wu Y, Pan Y, Liu W, Zhu Y, Guo J. Agglomeration of α-Al2O3 powders prepared by gel combustion. Ceram Int. 2008;34:1539–42.

    Article  CAS  Google Scholar 

  9. Li J, Pan Y, Changshu X, Ge Q, Guo J. Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process. Ceram Int. 2006;32:587–91.

    Article  CAS  Google Scholar 

  10. Kong J, Chao B, Wang T, Yan Y. Preparation of ultrafine spherical AlOOH and Al2O3 powders by aqueous precipitation method with mixed surfactants. Powder Technol. 2012;229:7–16.

    Article  CAS  Google Scholar 

  11. Manivasakan P, Rajendran V, Rauta PR, Sahu BB, Panda BK. Effect of mineral acids on the production of alumina nanopowder from raw bauxite. Powder Technol. 2011;211:77–84.

    Article  CAS  Google Scholar 

  12. Li H, Lu H, Wang S, Jia J, Sun H, Hu X. Preparation of a nano-sized and α-Al2O3 powder from a supersaturated sodium aluminate solution. Ceram Int. 2009;35:901–4.

    Article  CAS  Google Scholar 

  13. Matori KA, Wah LC, Hashim M, Ismail I, Zaid MHM. Phase transformations of α-alumina made from waste aluminum via a precipitation technique. Int J Mol Sci. 2012;13:16812–21.

    Article  CAS  Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:702–1706.

    Article  Google Scholar 

  15. Akahira T, Sunose T, Paper No. 246, 1969 Research report, Trans. Joint convention of four electrical institutes, Chiba Institute of Technology. 1971;16:22–31.

  16. Rajeshwari P. Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5021-2.

    Google Scholar 

  17. Pacurariu C, Lazaul RI, Lazau I, Tita D. Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim. 2007;88:647–52.

    Article  CAS  Google Scholar 

  18. Xia Y, Huang Y, Li Y, Liao S, Long Q, Liang J. LaPO4: Ce, and Mastplosts methods. J Therm Anal Calorim. 2015;120:1635–43.

    Article  CAS  Google Scholar 

  19. Koc S, Nil Toplan, Yildiz K, Toplan HO. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011;103:791–6.

    Article  CAS  Google Scholar 

  20. Li JG, Ikegami T, Lee JH, Mori T, Yajima Y. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. J Eur Ceram Soc. 2000;20:2395–405.

    Article  CAS  Google Scholar 

  21. Li JG, Sun X. Synthesis and sintering behavior of a nanocrystalline α-alumina powder. Acta Mater. 2000;48:3103–12.

    Article  CAS  Google Scholar 

  22. Nordahl CS, Messing GL. Sintering of α-Al2O3-seeded nanocrystalline γ-Al2O3 powders. J Eur Ceram Soc. 2002;22:415–22.

    Article  CAS  Google Scholar 

  23. Shelleman RA, Messing GL, Kumagai M. alpha alumina transformation in seeded boehmite gels. J Non-Cryst Solids. 1986;82:277–85.

    Article  CAS  Google Scholar 

  24. Nordahl CS, Messing GL. Thermal analysis of phase transformation kinetics in α-Al2O3 seeded boehmite and γ- Al2O3. Thermochim Acta. 1998;318:187–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Prof. Dr. Cuma Bindal for his notable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mediha Ipek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipek, M., Toplan, N. & Toplan, H.O. Transformation kinetics of θ- to α-phase of alumina powders prepared from different alumina salts by chemical processing. J Therm Anal Calorim 125, 645–649 (2016). https://doi.org/10.1007/s10973-016-5410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5410-1

Keywords

Navigation