Skip to main content
Log in

Preparation and Z-Scan nonlinear optical characterization of Au/SiO2- and Ag/SiO2-supported nanoparticles dispersed in silica sonogel films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Au/SiO2 and Ag/SiO2 supported metal-nanoparticles (MNPs) were implemented to fabricate SiO2-based inorganic–inorganic hybrid sonogel films. Prepared Au/SiO2- and Ag/SiO2-MNPs exhibited low 2D-HCP crystallinity with particle diameters below 10 nm and homogeneous size distribution. The catalyst-free (CF) sonogel route was successfully implemented to produce these optically active nanocomposite films by doping the liquid sol-phase with these MNP systems and its subsequent deposition onto glass substrates via standard spin-coating procedures. The easy MNP-loading within the mesoporous dielectric sonogel network evidenced a huge chemical affinity between the silica sonogel hosting system and the guest SiO2-supported MNPs. This fact allowed us to fabricate high quality hybrid films suitable for cubic nonlinear optical (NLO) characterizations via the Z-Scan technique. Indeed, the hosting sonogel network provided adequate thermal and mechanical stability protecting the active MNPs from environment conditions and diminished their tendency to aggregate; thus, preserving their pristine optical properties and morphology, giving rise to stable sol–gel hybrid films appropriate for photonic applications. Comprehensive morphological, structural, spectroscopic and nonlinear photophysical characterizations were optimally performed to the developed hybrid films. Our results have shown that the crystalline nature of the implemented MNPs, their small sizes and appropriate guest–host stabilizing interactions play a crucial role in the observation of improved cubic NLO-properties of these MNP structures embedded within the highly pure CF-sonogel confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The TOES/H2O-mixture immediately obtained after sonication is a homogeneous opaque suspension containing both the sonochemically reacted and unreacted molecular species from the constituting reactants. Note that despite the fact that the cooling system is always on during sonication, the intermittent US-irradiation sequences of 5 s allow the system to cool down in order to avoid excessive reaction temperatures promoted by intense US-irradiation. These intermittent irradiation sequences also provide adequate silence periods for recombination of the formed molecular species, given rise to an increase of hydrolyzed Si-based molecular compounds, which form after condensation/polymerization a highly pure SiO2-glassy network [5658].

  2. The slow drying process of the samples performed at room temperature into dissectors has proven to be efficient in order to produce fracture-free quality film structures with adequate morphology suitable for optical characterizations, as verified via AFM-microscopy. On the other hand, it has also been proven that negligible water residuals remain within the porous sonogel glassy film structure [57, 60].

  3. As reported in the literature [60], the thermal evolution of the sonogels XR-diffractograms show that the SiO2-sonogel network undergoes crystalline phase transformations at higher temperatures: between 800 and 1,200 °C broad bands corresponding to a mixture of trydimite and cristobalite; beyond 1,200 °C the highly crystalline β-cristobalite phase takes place (optimally observed for samples treated at ~1,400 °C).

  4. The bulk hybrid structures result from the remaining (not deposited) OH-TEOS:MNPs/SiO2 doped sol-mixtures (after drying).

References

  1. Qu X, Peng Z, Jiang X, Dong S (2004) Langmuir 20:2519–2522

    Article  CAS  Google Scholar 

  2. Stoleru VG, Towe E (2004) Appl Phys Lett 85:5152–5154

    Article  CAS  Google Scholar 

  3. Ung T, Liz-Marzán LM, Mulvaney P (2001) J Phys Chem B 105:3441–3452

    Article  CAS  Google Scholar 

  4. Carvalho ICS, Mezzapesa FP, Kazansky PG, Deparis O, Kawazu M, Sakaguchi K (2007) Mater Sci Eng C 27:1313–1316

    Article  CAS  Google Scholar 

  5. Xu XHN, Huang S, Brownlow W, Salatia JK, Jeffers RB (2004) J Phys Chem B 108:15543–15551

    Article  CAS  Google Scholar 

  6. Zhuang J, Liu H, Song Y, Li X, Wang N, He X, Li Y, Zhu D (2005) Synth Met 149:175–179

    Article  CAS  Google Scholar 

  7. Chen W, Cai W, Wang G, Zhang L (2001) Appl Surf Sci 174:51–54

    Article  CAS  Google Scholar 

  8. Kaganovich EB, Kizyak IM, Kudryavtsev AA, Manoilov EG (2009) Semicond Phys Quantum Electron Optoelectron 12:165–169

    CAS  Google Scholar 

  9. Lance-Kelly K, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  Google Scholar 

  10. Laurent G, Felidj N, Truong SL, Levi G, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2005) Nano Lett 5:253–258

    Article  CAS  Google Scholar 

  11. Lippitz M, van-Dijk MA, Orrit M (2005) Nano Lett 5:799–802

    Article  CAS  Google Scholar 

  12. Nehl CL, Liao H, Hafner JH (2006) Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  13. Haes AJ, Zou S, Schatz GC, Duyne RPV (2004) J Phys Chem B 108:109–116

    Article  CAS  Google Scholar 

  14. Kamat PV (2002) J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  15. Dulkeith E, Niedereichholz T, Klar TA, Feldmann J (2004) Phys Rev B 70:205424

    Article  Google Scholar 

  16. Yang Y, Hori M, Hayakawa T, Nogami M (2005) Surf Sci 579:215–224

    Article  CAS  Google Scholar 

  17. Vollmer M, Kreibig U (1995) Optical properties of metal clusters. Springer Series in Materials Science, Berlin

    Google Scholar 

  18. Jensen TR, Schatz GC, Van-Duyne RP (1999) J Phys Chem B 103:2394–2401

    Article  CAS  Google Scholar 

  19. Malinsky MD, Kelly KL, Schatz GC, Van-Duyne RP (2001) J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  20. Bohren CF, Huffman R (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  21. Maier SA, Brongersma ML, Kik PG, Atwater HA (2002) Phys Rev B 65:193408

    Article  Google Scholar 

  22. Lazarides AA, Schatz GC (2000) J Phys Chem B 104:460–467

    Article  CAS  Google Scholar 

  23. Ozbay E (2006) Science 311:189–193

    Article  CAS  Google Scholar 

  24. Schmid G, Chi LF (1998) Adv Mater 10:515–526

    Article  CAS  Google Scholar 

  25. Del-Fatti N, Vallee F, Flytzanis C, Hamanaka Y, Nakamura A (2000) Chem Phys 251:215–226

    Article  CAS  Google Scholar 

  26. Stagira S, Nisoli M, De-Silvestri S, Stella A, Tognini P, Cheyssac P, Kofman R (2000) Chem Phys 251:259–267

    Article  CAS  Google Scholar 

  27. Shalaev VM, Kawata S (2007) Nanophotonics with surface plasmons. Elsevier BV, Oxford

    Google Scholar 

  28. Schatz GC, Van-Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. Wiley, Chichester

    Google Scholar 

  29. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323–10337

    Article  CAS  Google Scholar 

  30. Miao XY, Lin LY (2007) Opt Lett 32:295–297

    Article  Google Scholar 

  31. Sönnichsen C, Reinhard BM, Liphard J, Alivisatos AP (2005) Nat Biotechnol 23:741–745

    Article  Google Scholar 

  32. Lan S, Link S, Halas NL (2007) J Nat Photon 1:641–684

    Article  Google Scholar 

  33. Shao DB, Chen SC (2006) Nano Lett 6:2279–2283

    Article  CAS  Google Scholar 

  34. Smith DR, Pendry JB, Wiltshire MCK (2004) Science 305:788–792

    Article  CAS  Google Scholar 

  35. Okada N, Hamanaka Y, Nakamura A, Pastoriza-Santos I, Liz-Marzán LM (2004) J Phys Chem B 108:8751–8755

    Article  CAS  Google Scholar 

  36. Ricard D, Roussignol P, Flytzanis C (1985) Opt Lett 10:511–513

    Article  CAS  Google Scholar 

  37. Tanahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) J Appl Phys 79:1244–1249

    Article  CAS  Google Scholar 

  38. Hache H, Ricard D, Flytzanis C (1986) J Opt Soc Am B 3:1647–1655

    Article  CAS  Google Scholar 

  39. Wang QQ, Wang SF, Hang WT, Gong QH (2005) J Phys D Appl Phys 38:389–391

    Article  Google Scholar 

  40. Lepeshkin NN, Kim W, Safonov VP, Zhu JG, Armstrong RL, White CW, Zuhr RA, Shalaev VM (1999) J Nonlinear Opt Phys Mater 8:191–210

    Article  CAS  Google Scholar 

  41. Hache A, Bourgeois M (2000) Appl Phys Lett 77:4089–4091

    Article  CAS  Google Scholar 

  42. Santhi A, Naboodiri VV, Radhakrishnan P, Nampoori VPN (2006) J Appl Phys 100:053109

    Article  Google Scholar 

  43. Hamanaka Y, Fukuta K, Nakamura A, Liz-Marzán LM, Mulvaney P (2004) Appl Phys Lett 84:4938–4940

    Article  CAS  Google Scholar 

  44. Deng Y, Sun Y, Wang P, Zhang D, Ming H, Zhang Q (2008) Phys E 40:911–914

    Article  CAS  Google Scholar 

  45. Rodríguez-Rosales AA, Morales-Saavedra OG, Román CJ, Ortega-Martínez R (2008) Opt Mater 31:350–360

    Article  Google Scholar 

  46. Parks GA (1965) Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  47. Zanella R, Sandoval A, Santiago P, Basiuk VA, Saniger JM (2006) J Phys Chem B 110:8559–8565

    Article  CAS  Google Scholar 

  48. Block BP, Bailar JC Jr (1951) J Am Chem Soc 73:4722–4725

    Article  CAS  Google Scholar 

  49. Zanella R, Delannoy L, Louis C (2005) Appl Catal A 291:62–72

    Article  CAS  Google Scholar 

  50. Zanella R, Louis C (2005) Catal Today 107–108:768–777

    Article  Google Scholar 

  51. Bond GC (2001) Gold Bull 34:117–140

    Article  CAS  Google Scholar 

  52. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676–1680

    Article  CAS  Google Scholar 

  53. Rodríguez-González V, Ruiz-Gómez MA, Torres-Martínez LM, Zanella R, Gómez R (2009) Catal Today 148:109–114

    Article  Google Scholar 

  54. Rodríguez-González V, Juárez-Ramírez I, Zanella R, Torres-Martínez LM (2008) J Ceram Process Res 9:601–605

    Google Scholar 

  55. Brinker CJ, Scherer GW (1991) Sol–gel science. Academic Press, San Diego

    Google Scholar 

  56. Morales-Saavedra OG, Zanella R (2010) Mater Chem Phys 124:816–830

    Article  CAS  Google Scholar 

  57. Torres-Zúñiga V, Morales-Saavedra OG, Rivera E, Castañeda-Guzmán R, Bañuelos JG, Ortega-Martínez R (2010) J Sol–Gel. Sci Technol 56:7–18

    Google Scholar 

  58. Sánchez-Vergara ME, Morales-Saavedra OG, Ontiveros-Barrera FG, Torres-Zúñiga V, Ortega-Martínez R, Rebollo AO (2009) Mater Sci Eng, B 158:98–107

    Article  Google Scholar 

  59. Baccile N, Babonneau F, Thomas B, Coradin T (2009) J Mater Chem 19:8537–8559

    Article  CAS  Google Scholar 

  60. Flores-Flores JO, Saniger JM (2006) J Sol–Gel. Sci Technol 39:235–240

    Google Scholar 

  61. Morales-Saavedra OG, Rivera E, Flores-Flores JO, Castañeda R, Bañuelos JG, Saniger JM (2007) J Sol–Gel. Sci Technol 41:277–289

    Article  CAS  Google Scholar 

  62. Tamil-Selvan S, Nogami M, Nakamura A, Hamanaka Y (1999) J Non Cryst Solids 255:254–258

    Article  CAS  Google Scholar 

  63. Yang Y, Shi J, Huang W, Dai S, Wang L (2003) J Mater Sci 38:1243–1248

    Article  CAS  Google Scholar 

  64. Ferrara MC, Mirenghi L, Mevoli A, Tapfer L (2008) Nanotechnology 19:365706

    Article  CAS  Google Scholar 

  65. Mandal S, Arumugam SK, Pasricha R, Sastry M (2005) Bull Mater Sci 28:503–510

    Article  CAS  Google Scholar 

  66. Ghosh A, Patra CR, Mukherjee P, Sastry M, Kumar R (2003) Microporous Mesoporous Mater 58:201–211

    Article  CAS  Google Scholar 

  67. Tsung CK, Hong W, Shi Q, Kou X, Yeung MH, Wang J, Stucky GD (2006) Adv Funct Mater 16:2225–2230

    Article  CAS  Google Scholar 

  68. Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H, López GP, Brinker CJ (2004) Science 304:567–571

    Article  CAS  Google Scholar 

  69. Kim B, Tripp SL, Wei A (2001) Mat Res Soc Symp Proc 676:6.1.1

    Google Scholar 

  70. Biggs S, Mulvaney P (1994) J Chem Phys 100:8501–8505

    Article  CAS  Google Scholar 

  71. Reyes-Esqueda JA, Bautista-Salvador A, Zanella R (2008) J Nanosci Nanotechnol 8:3843–3850

    Article  CAS  Google Scholar 

  72. Martínez JR, Ruiz F, Vorobiev YV, Pérez-Robles F, Gonzalez-Hernandez J (1998) J Chem Phys 109:7511–7514

    Article  Google Scholar 

  73. Kim MJ, Na HJ, Lee KC, Yoo EA, Lee M (2003) J Mater Chem 13:1789–1792

    Article  CAS  Google Scholar 

  74. Rentería VM, García-Macedo J (2005) Mater Chem Physs 91:88–93

    Article  Google Scholar 

  75. Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Appl Surf Sci 28:546–551

    Article  Google Scholar 

  76. Zhang Y, Yuwono AH, Li J, Wang J (2008) Microporous Mesoporous Mater 110:242–249

    Article  CAS  Google Scholar 

  77. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García-de-Abajo FJ (2008) Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  78. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Phys Rev B 48:18178–18188

    Article  Google Scholar 

  79. Serna R, Suárez-Garcia A, Afonso CN, Babonneau D (2006) Nanotechnology 17:4588

    Article  CAS  Google Scholar 

  80. Gao L, Li ZY (2000) J Appl Phys 87:1620–1625

    Article  CAS  Google Scholar 

  81. Huang JP, Gao L, Li ZY (2000) Solid State Commun 115:347–352

    Article  CAS  Google Scholar 

  82. Scaffardi LB, Tocho JO (2006) Nanotechnology 17:1309

    Article  CAS  Google Scholar 

  83. Hache F, Ricard D, Flytzanis C, Kreibig U (1988) Appl Phys A 47:347–357

    Article  Google Scholar 

  84. Hache F, Ricard D, Flytzanis C (1986) J Opt Soc Am B 3:1647–1655

    Article  CAS  Google Scholar 

  85. Bigot JY, Halté V, Merle JC, Daunois A (2000) Chem Phys 251:181–203

    Article  CAS  Google Scholar 

  86. Jafarkhani P, Torkamany MJ, Dadras S, Chehrghani A, Sabbaghzadeh J (2011) Nanotechnology 22:235703

    Article  CAS  Google Scholar 

  87. Falcão-Filho EL, de Araújo CB, Rodrigues JJ Jr (2007) J Opt Soc Am B 24:2948–2956

    Article  Google Scholar 

  88. Karimzadeh R, Aleali H, Mansour N (2011) Opt Commun 284:2370–2375

    Article  CAS  Google Scholar 

  89. Cui F, Hua Z, Cui X, Guo L, Wei C, Bu W, Shi J (2009) Dalton Trans 2679–2682. doi:10.1039/b819660e

  90. Sheik-Bahae M, Said AA, Van Stryland EW (1989) Opt Lett 14:955–957

    Article  CAS  Google Scholar 

  91. Sheik-Bahae M, Said AA, Hagan DJ, Soileau MJ, Van Stryland EW (1991) Opt Eng 30:1228–1235

    Article  CAS  Google Scholar 

  92. Liu X, Guo S, Wang H, Hou L (2001) Opt Commun 197:431–437

    Article  CAS  Google Scholar 

  93. Fernández-Hernández RC, Gleason-Villagran R, Torres-Torres C, Cheang-Wong JC, Crespo-Sosa A, Rodriguez-Fernández L, López-Suarez A, Rangel-Rojo R, Oliver A, Reyes-Esqueda JA (2011) J Phys Conf Series 274:012074

    Article  Google Scholar 

  94. Gómez LA, de Araújo CB, Brito-Silva AM, Galembeck A (2007) J Opt Soc Am B 24:2136–2140

    Article  Google Scholar 

  95. Aleali H, Sarkhosh L, Karimzadeh R, Mansour N (2011) Phys Status Solidi B 248:680–685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Guadalupe Bañuelos (CCADET-UNAM) for valuable support on AFM-imaging. Likewise, we wish to thank to Adriana Tejeda Cruz (IIM-UNAM) and Hugo Sanchez-Flores (CCADET-UNAM) for their valuable support on recording XRD- and FTIR-spectra, respectively. R. Z., V. M. R. and J. O. F. F. acknowledge PAPIIT-IN108310 and CONACYT-130407 projects and the Nanoscience and Nanotechnology CONACYT network for financial support. O. G. M. S. acknowledges financial support from the DAAD academic organization (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar G. Morales-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Saavedra, O.G., Zanella, R., Maturano-Rojas, V. et al. Preparation and Z-Scan nonlinear optical characterization of Au/SiO2- and Ag/SiO2-supported nanoparticles dispersed in silica sonogel films. J Sol-Gel Sci Technol 63, 340–355 (2012). https://doi.org/10.1007/s10971-012-2793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2793-8

Keywords

Navigation