Skip to main content
Log in

Shape and size controlled synthesis of CuInS2 particles in polyalcohol system used as “printable ink” for thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Chalcopyrite semiconductor CuInS2 (CIS) particles are synthesized using a simple method and low-cost solvent. Two kinds of agents are used to adjust and control the sizes and shapes of the particles. The phases, morphologies and grown processes of the products are studied. The results show that the sizes and shapes of the CIS particles can be adjusted and controlled. Furthermore, CIS thin films are fabricated using these two kinds of particles. The thin films appear different morphologies and qualities via different kinds of particles, indicating the importance of controlling the shape and size of the precursor particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaelin M, Rudmanna D, Kurdesaua F, Zogga H, Meyerb T, Tiwari AN (2005) Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 480–481:486–490

    Article  Google Scholar 

  2. Klaer J, Bruns J, Henninger R, Siemer K, Klenk R, Ellmer K, Braunig D (1998) Efficient CuInS2 thin-film solar cells prepared by a sequential process. Semicond Sci Technol 13:1456–1458

    Article  CAS  Google Scholar 

  3. Habas SE, Platt HAS, Van Hest MFAM, Ginley DS (2010) Low-cost inorganic solar cells: from ink to printed device. Chem Rev 110:6571–6594

    Article  CAS  Google Scholar 

  4. Editors (2008) Call for papers: special issue on chalcopyrite thin film solar cells. Prog Photovolt Res Appl 16:271

    Article  Google Scholar 

  5. Palm J, Probst V, Karg FH (2004) Second generation CIS solar modules. Sol Energy 77:757–765

    Article  CAS  Google Scholar 

  6. Lammer M, Kniese R, Powalla M (2004) In-line deposited Cu(In, Ga)Se2 solar cells: influence of deposition temperature and Na co-evaporation on carrier collection. Thin Solid Films 451:175–178

    Article  Google Scholar 

  7. Norsworthy G, Leidholm CR, Halani A, Kapur VK, Roe R, Basol BM, Matson R (2000) CIS film growth by metallic ink coating and selenization. Sol Energy Mater Sol Cells 60:127–134

    Article  CAS  Google Scholar 

  8. Long F, Wang W, Tao H, Jia T, Li X, Zou Z, Fu Z (2010) Solvothermal synthesis, nanocrystal print and photoelectrochemical properties of CuInS2 thin film. Mater Lett 64:195–198

    Article  CAS  Google Scholar 

  9. Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP (1996) An approach to electrical studies of single nanocrystals. J Phys Chem 100(31):13226–13239

    Article  Google Scholar 

  10. Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari N (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18:434–452

    Article  CAS  Google Scholar 

  11. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20:6434–6443

    Article  CAS  Google Scholar 

  12. Guo QJ, Kim SJ, Kar M, Shafarman WN, Birkmire RW, Stach EA, Agrawal R, Hillhouse HW (2008) Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett 8:2982–2987

    Article  CAS  Google Scholar 

  13. Chang C, Ting J (2009) Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process. Thin Solid Films 517:4174–4178

    Article  CAS  Google Scholar 

  14. Koo B, Patel RN, Korgel BA (2009) Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J Am Chem Soc 131:3134–3135

    Article  CAS  Google Scholar 

  15. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA (2008) Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc 1307:16770–16777

    Article  Google Scholar 

  16. Han S, Kong M, Guo Y, Wang M (2009) Synthesis of copper indium sulfide nanoparticles by solvothermal method. Mater Lett 63:1192–1194

    Article  CAS  Google Scholar 

  17. Qi Y, Tang K, Zeng S, Zhou W (2008) Template-free one-step fabrication of porous CuInS2 hollow microspheres. Microporous Mesoporous Mater 114:395–400

    Article  CAS  Google Scholar 

  18. Sheng X, Wang L, Luo Y, Yang D (2011) Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route. Nanoscale Res Lett 6:562–567

    Article  Google Scholar 

  19. Zheng L, Xu Y, Song Y, Wu C, Zhang M, Xie Y (2009) Monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorg Chem 48:4003–4009

    Article  CAS  Google Scholar 

  20. Wang H, Qiao X, Chen JG, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453

    Article  CAS  Google Scholar 

  21. Tan X, Wang Z, Yang J, Song C, Zhang R, Cui Y (2009) Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 20:445102–445109

    Article  Google Scholar 

  22. Li F, Kong T, Bi W, Li D, Li Z, Huang X (2009) Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method. Appl Surf Sci 12:6285–6289

    Article  Google Scholar 

  23. Wu C, Yu SH, Antoniett M (2006) Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chem Mater 18:3599–3601

    Article  CAS  Google Scholar 

  24. Tang H, Yan M, Zhang H, Ma X, Wang L, Yang D (2005) Preparation and characterization of CuInS2 thin films for solar cells by chemical bath deposition. Chen Res Chin U 21:236–239

    CAS  Google Scholar 

  25. Kavcar N (1998) Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin films. Sol Energy Mater Sol Cells 52:183–195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program) (No. 2007CB613403), the Innovation Team Project of Zhejiang Province (2009R50005), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, X., Wang, L. & Yang, D. Shape and size controlled synthesis of CuInS2 particles in polyalcohol system used as “printable ink” for thin films. J Sol-Gel Sci Technol 62, 87–91 (2012). https://doi.org/10.1007/s10971-012-2689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2689-7

Keywords

Navigation