Skip to main content
Log in

Sol–gel technology for functional finishing of PES fabric by stimuli-responsive microgel

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The possibility of incorporating a stimuli-responsive microgel into a silica matrix by the sol–gel method was studied. This method allows the preparation of a novel class of functional finishes for textile material modification, which is aimed at the creation of simultaneous stimulus-responsive behaviour and functional protective properties. Using a pad-dry-cure method, a thermo- and pH-responsive microgel (PNCS) based on poly-(N-isopropylacrylamide) (poly-NiPAAm) and chitosan was embedded into a silica matrix on a previously activated polyester (PES) fabric. The matrix was composed of a model sol–gel precursor, vinyltrimethoxysilane (VTMS), in combination with hydrophilic fumed silica nanoparticles (SiO2). Functionalized PES fabric samples were characterised by determining the morphological and chemical properties using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The stimuli (temperature and pH) responsiveness of the functionalized PES fabric was established by measuring its porosity, wicking ability, moisture content, drying rate, water vapour transmission rate and water uptake. In order to assess the washing fastness of the surface modifying systems, the tests were done before and after five consecutive washings. The results showed that sol–gel technology is an appropriate method for the incorporation of PNCS microgel on PES fibre surface. Because of the elasticity of the sol–gel matrix, the VTMS/SiO2 polysiloxane film had no adverse influence on the swelling/deswelling effect of the PNCS microgel, thus retaining and even enhancing its stimulus response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jocic D (2008) Res J Text Appar 12:58–65

    CAS  Google Scholar 

  2. Carreira AS, Gonçalves FAMM, Mendonça PV, Gil MH, Coelho JFJ (2010) Carbohydr Polym 80:618–630

    Article  CAS  Google Scholar 

  3. Prabaharan M, Mano JF (2006) Macromol Biosci 6:991–1008

    Article  CAS  Google Scholar 

  4. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk W, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101–113

    Article  Google Scholar 

  5. Lim S-H, Hudson SM (2003) J Macromol Sci Pol R C43:223–269

    Article  CAS  Google Scholar 

  6. Vårum KM, Ottøy MH, Smidsrød O (1994) Carbohydr Polym 25:65–70

    Article  Google Scholar 

  7. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  8. Dumitriu RP, Mitchell RG, Vasilea C (2011) Polym Int 60:222–233

    Article  CAS  Google Scholar 

  9. Wang JY, Chen L, Zhao YP, Guo G, Zhang R (2009) J Mater Sci Mater M 20:583–590

    Article  CAS  Google Scholar 

  10. Shi J, Liu LH, Liu XP, Sun XM, Cao SK (2008) Polym Adv Technol 19:1467–1473

    CAS  Google Scholar 

  11. Kaith BS, Kumar K (2008) Desalination 229:331–341

    Article  CAS  Google Scholar 

  12. Crini G, Badot PM (2008) Prog Polym Sci 33:39–447

    Article  Google Scholar 

  13. Teng SX, Wang SG, Liu XW, Gong WX, Sun XF, Cui JJ, Gao BY (2009) Colloid Surf A 340:86–92

    Article  CAS  Google Scholar 

  14. Chatterjee S, Chatterjee T, Woo SH (2010) Bioresour Technol 101:3853–3858

    Article  CAS  Google Scholar 

  15. Simovic L, Skundric P, Pajic-Lijakovic I, Ristic K, Medovic A, Tasic G (2010) J Appl Polym Sci 117:1424–1430

    CAS  Google Scholar 

  16. Gupta B, Agarwal R, Alam MS (2010) Indian J Fibre Text 35:174–187

    CAS  Google Scholar 

  17. Risbud MV, Karamuk E, Schlosser V, Mayer J (2003) J Biomat Sci Polym E 14:719–731

    Article  CAS  Google Scholar 

  18. Yamak O, Kalkan NA, Aksoy S, Altinok H, Hasirci N (2009) Process Biochem 44:440–445

    Article  CAS  Google Scholar 

  19. Crespy D, Rossi MR (2007) Polym Int 56:1461–1468

    Article  CAS  Google Scholar 

  20. Jocić D, Tourrette A, Glampedaki P, Warmoeskerken MMCG (2009) Mater Technol 24:14–23

    Google Scholar 

  21. Tourrette A, De Geyter N, Jocić D, Morent R, Warmoeskerken MMCG, Leys C (2009) Colloid Surf A 352:126–135

    Article  CAS  Google Scholar 

  22. Kulkarni A, Tourrette A, Warmoeskerken MMCG, Jocic D (2010) Carbohyd Polym 82:1306–1314

    Article  CAS  Google Scholar 

  23. Križman Lavrič P, Tomšič B, Simončič B, Warmoeskerken MMCG, Jocić D (2011) Cellulose. doi:10.1007/s10570-011-9635-7

  24. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  25. Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific Publishing Co. Pte Ltd., Singapore

    Book  Google Scholar 

  26. Simončič B, Tomšič B (2010) Text Res J 80:1721

    Article  Google Scholar 

  27. Akkopru B, Durucan C (2007) J Sol Gel Sci Technol 43:227–236

    Article  CAS  Google Scholar 

  28. Haufe H, Thron A, Fiedler D, Mahltig B, Böttcher H (2005) Surf Coat Int Pt BC 88:55

    Article  CAS  Google Scholar 

  29. Mahltig B, Haufe H, Böttcher H (2005) J Mater Chem 15:4385–4398

    Article  CAS  Google Scholar 

  30. Xing Y, Yang X, Dai J (2007) J Sol Gel Sci Technol 43:187–192

    Article  CAS  Google Scholar 

  31. Tomšič B, Simončič B, Orel B, Černe L, Forte Tavčer P, Zorko M, Jerman I, Vilčnik A, Kovač J (2008) J Sol Gel Sci Technol 47:44–57

    Article  Google Scholar 

  32. Tomšič B, Simončič B, Orel B, Žerjav M, Schroers HJ, Simončič A, Samardžija Z (2009) Carbohyd Polym 75:618–626

    Article  Google Scholar 

  33. Klemenčič D, Simončič B, Tomšič B, Orel B (2010) Carbohyd Polym 80:426–435

    Article  Google Scholar 

  34. Song Y-W, Do H-S, Joo H-S, Lim D-H, Kim S, Kim H-J (2006) J Adhes Sci Technol 20:1357–1365

    Article  CAS  Google Scholar 

  35. Lee CF, Wen CJ, Chiu WY (2003) J Polym Sci A Polym Chem 41:2053–2063

    Article  CAS  Google Scholar 

  36. Van Oss CJ, Giese RF, Murphy K, Norris J, Chaudhury MK, Good J (1992) J Adhes Sci Technol 6:413–428

    Article  Google Scholar 

  37. Chibowski E, Gonzales-Caballero F (1993) Langmuir 9:330–340

    Article  CAS  Google Scholar 

  38. Vince J, Orel B, Vilčnik A, Fir M, Šurca Vuk A, Jovanovski V, Simončič B (2006) Langmuir 22:6489–6497

    Article  CAS  Google Scholar 

  39. Tomšič B, Simončič B, Vince J, Orel B, Vilčnik A, Fir M, Šurca Vuk A, Jovanovski V (2007) Tekstilec 50:3–15

    Google Scholar 

  40. Vilčnik A, Jerman I, Šurca Vuk A, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Langmuir 25:5869–5880

    Article  Google Scholar 

  41. Holland BJ, Hay JN (2002) Polymer 43:1835–1847

    Article  CAS  Google Scholar 

  42. Parvinzadeh M, Moradian S, Rashidi A, Yazdanshenas M-E (2010) Appl Surf Sci 256:2792–2802

    Article  CAS  Google Scholar 

  43. Kijchavengku T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM (2010) Polym Degrad Stabil 95:99–107

    Article  Google Scholar 

  44. Kondratowicz FŁ, Ukielski R (2009) Polym Degrad Stabil 94:375–382

    Article  CAS  Google Scholar 

  45. Abidi N, Hequet E, Tarimala S (2007) Text Res J 77:668–674

    Article  CAS  Google Scholar 

  46. Nguyen V, Yoshida W, Cohen Y (2003) J Appl Polym Sci 87:300–310

    Article  CAS  Google Scholar 

  47. Socrates G (2001) Infrared and raman characteristic group frequencies. Wiley, New York

    Google Scholar 

  48. Chen LF, Cai ZH, Zhang L, Lan L, Chen XJ, Zeng JP (2007) J Mater Sci 42:1004–1009

    Article  CAS  Google Scholar 

  49. He J, Zhou L, Soucek MD, Wollyung KM, Wesdemiotis C (2007) J Appl Polym Sci 105:2376–2386

    Article  CAS  Google Scholar 

  50. Pan YV, Wesley AR, Luginbuhl R, Denton DD, Ratner BD (2001) Biomacromolecules 2:32–36

    Article  CAS  Google Scholar 

  51. Carrillo F, Defays B, Colom X (2008) Eur Polym J 44:4020–4028

    Article  CAS  Google Scholar 

  52. Sun G, Zhang X-Z, Chu C-C (2007) J Mater Sci Mater M18:1563–1577

    Article  Google Scholar 

  53. Hsieh SH, Lin ES, Wei CH (2006) J Appl Polym Sci 101:3264–3269

    Article  CAS  Google Scholar 

  54. Lee SB, Ha ID, Cho SK, Kim SJ, Lee MY (2004) J Appl Polym Sci 92:2612–2620

    Article  CAS  Google Scholar 

  55. Gupta D, Haile A (2007) Carbohyd Polym 69:164–171

    Article  CAS  Google Scholar 

  56. Chaplin M (2010) South Bank University, London. http://www.lsbu.ac.uk/water/hydrat.html. Accessed 10 Dec 2010

Download references

Acknowledgment

The authors gratefully acknowledge financial support provided by the Marie Curie Excellence Grant (EXT) project ADVANBIOTEX (MEXT-CT-2006-042641), funded by the EU’s Sixth Framework Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brigita Tomšič or Dragan Jocić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomšič, B., Lavrič, P.K., Simončič, B. et al. Sol–gel technology for functional finishing of PES fabric by stimuli-responsive microgel. J Sol-Gel Sci Technol 61, 463–476 (2012). https://doi.org/10.1007/s10971-011-2647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2647-9

Keywords

Navigation