Skip to main content
Log in

Mechanical, thermal, chemical, and physical properties of sponge gourd outer skin fiber-reinforced vinyl ester composites

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The thermal, physical, and mechanical properties of ecologically sustainable composite materials made of sponge gourd outer skin fiber and vinyl ester matrix are examined in this study. Vinyl ester was compression molded using sponge gourd outer skin fiber, a novel reinforcing material. Sponge gourd outer skin fiber was prepared using chemical, sun-drying, and furnace-drying methods. At different fiber loadings (0, 10, 15, 20, and 30 wt.%), the study examined mechanical (tensile, flexural, impact, hardness), physical (water absorption, biodegradability), thermal, chemical, and matrix-fiber bonding properties. The composite material with 30% fiber loading has better mechanical characteristics over 0 wt.% such as 2.1 times in tensile strength, 2.2 times in flexural strength, and 4.5 times in impact strength as compared to the pure vinyl ester material, greatest average hardness value of 96 on the Shore A scale. FTIR and TGA were used to study chemical distribution and thermal stability. The study found that 30% fiber loading improved tensile, flexural, impact, and hardness. The material’s biodegradability studies showed its environmental friendliness. The results support sustainable composites in aircraft, automotive, and construction. As a link between surface shape and stress-strain distribution, the fiber-matrix interface affects material characteristics. By reducing dependency on non-renewable resources, natural fibers in composite materials increase performance and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The corresponding author will provide the datasets created during and/or analyzed during the current investigation upon reasonable request.

Abbreviations

SGOSF:

Sponge gourd outer skin fiber

VE:

Vinyl ester

MEKP:

Methyl ethyl ketone peroxide

ASTM:

American Society for Testing and Materials

UTM:

Universal Testing Machine

FTIR:

Fourier transform infrared

TGA:

Thermogravimetric analysis

SEM:

Scanning electron microscope

wt.%:

Weight percentage

KeV:

Kiloelectronvolts

References

  1. Balaji A, Karthikeyan B, Swaminathan J, Sundar C (2017) Mechanical and thermal properties of untreated bagasse fiber reinforced cardanol eco-friendly biocomposites. Adv Nat Appl Sci 11(8):73–78

    Google Scholar 

  2. Paulraj P, Balakrishnan K, Rajendran RRMV, Alagappan B (2021) Investigation on recent research of mechanical properties of natural fiber reinforced polymer (NFRP) materials. Mater Plast 58(2):100–118

    Article  Google Scholar 

  3. Prabhu P, Balaji A, Jayabalakrishnan D, Velmurugan N, Vimalnathan P, Karthikeyan B et al (2022) Study on machining parameters and mechanical properties of hybrid Agave sisalana and glass fiber-reinforced polyester composites (A/GFRP). J Nat Fibers 19(15):11644–11657

    Article  Google Scholar 

  4. Balaji A, Kannan S, Purushothaman R, Mohanakannan S, Maideen AH, Swaminathan J et al (2024) Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Convers Biorefinery 14(6):7835–7845

    Article  Google Scholar 

  5. Sahayaraj AF, Muthukrishnan M, Jenish I (2023) Extraction and characterization of sponge gourd outer skin fiber. J Nat Fibers 20(2):2208888

    Article  Google Scholar 

  6. Vigneshwaran GV, Jenish I, Sivasubramanian R (2014) Design, fabrication and experimental analysis of pandanus fibre reinforced polyester composite. Adv Mater Res 984:253–256

    Article  Google Scholar 

  7. Ramli R, Yunus RM, Beg MDH, Alam AKMM (2011) Effects of different coupling agents on the mechanical and interfacial properties of oil palm fiber reinforced polypropylene composites. J Reinf Plast Compos 30(4):301–308

    Article  Google Scholar 

  8. Taborda-Ríos JA, López-Botello O, Zambrano-Robledo P, Reyes-Osorio LA, Garza C (2020) Mechanical characterisation of a bamboo fibre/polylactic acid composite produced by fused deposition modelling. J Reinf Plast Compos 39(23–24):932–944

    Article  Google Scholar 

  9. Peng X, Fan M, Hartley J, Al-Zubaidy M (2012) Properties of natural fiber composites made by pultrusion process. J Compos Mater 46(2):237–246

    Article  Google Scholar 

  10. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11(10):1667

    Article  Google Scholar 

  11. Pantano A, Bongiorno F, Marannano G, Zuccarello B (2021) Enhancement of static and fatigue strength of short sisal fiber biocomposites by low fraction nanotubes. Appl Compos Mater 28:91–112

    Article  Google Scholar 

  12. Jenish I, Chinnasamy SGV, Basavarajappa S, Indran S, Divya D, Liu Y (2020) Tribo-mechanical characterization of carbonized coconut shell micro particle reinforced with Cissus quadrangularis stem fiber/epoxy novel composite for structural application. J Nat Fibers

  13. Shaw SJ (1987) High-temperature polymers for adhesive and composite applications. Mater Sci Technol 3(8):589–599

    Article  Google Scholar 

  14. Raghavendra G, Ojha S, Acharya SK, Pal SK (2014) Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. J Compos Mater 48(20):2537–2547

    Article  Google Scholar 

  15. Singh N, Rani A (2013) Extraction and processing of Sesbania aculeata fib. Asian J Home Sci, pp 399–402

  16. Tímár-Balázsy Á, Eastop D (2012) Chemical principles of textile conservation. Routledge

    Book  Google Scholar 

  17. Shen X, Jia J, Chen C, Li Y, Kim JK (2014) Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. J Mater Sci 49:3225–3233

    Article  Google Scholar 

  18. Taha I, Ziegmann G (2006) A comparison of mechanical properties of natural fiber filled biodegradable and polyolefin polymers. J Compos Mater 40(21):1933–1946

    Article  Google Scholar 

  19. Symington MC, Banks WM, West OD, Pethrick RA (2009) Tensile testing of cellulose based natural fibers for structural composite applications. J Compos Mater 43(9):1083–1108

    Article  Google Scholar 

  20. Sathish S, Prabhu L, Gokulkumar S, Karthi N, Balaji D, Vigneshkumar N (2021) Extraction, treatment and applications of natural fibers for bio-composites–a critical review. Int Polym Process 36(2):114–130

    Article  Google Scholar 

  21. Wang BC, Huang YD, Liu L (2006) Effects of fibre surface silanisation on silica fibre/phenolics composites produced by resin transfer moulding process. Mater Sci Technol 22(2):206–212

    Article  Google Scholar 

  22. Kumar V, Arun A, Rajkumar K, Palaniyappan S (2024) Effect of Kigelia pinnata biochar inclusion on mechanical and thermal properties of curtain climber fiber reinforced epoxide biocomposites. Polym Compos

  23. Vishal K, Rajkumar K, Sabarinathan P, Arun A (2023) Mechanical and thermal characteristics of steam-exploded silane grafted Kigelia Pinnata fruit (KPF) fiber reinforced vinyl ester polymer composites. Polym Compos 1(1):1–17

    Google Scholar 

  24. Elenchezhian MRP, Das PP, Rahman M, Vadlamudi V, Raihan R, Reifsnider K (2021) Stiffness degradation in fatigue life of composites using dielectric state variables. Compos Struct 273:114272

    Article  Google Scholar 

  25. Nitin MS, Suresh Kumar S (2022) Ballistic performance of synergistically toughened Kevlar/epoxy composite targets reinforced with multiwalled carbon nanotubes/graphene nanofillers. Polym Compos 43(2):782–797

    Article  Google Scholar 

  26. Singh AA, Palsule S (2014) Coconut fiber reinforced chemically functionalized high-density polyethylene (CNF/CF-HDPE) composites by Palsule process. J Compos Mater 48(29):3673–3684

    Article  Google Scholar 

  27. da Silva RV, Voltz H, Filho AI, Xavier Milagre M, Carvalho Machado CDS (2021) Hybrid composites with glass fiber and natural fibers of sisal, coir, and luffa sponge. J Compos Mater 55(5):717–728

    Article  Google Scholar 

  28. Cavalcanti DK, Banea MD, Neto JDSS, Lima RAA (2021) Comparative analysis of the mechanical and thermal properties of polyester and epoxy natural fibre-reinforced hybrid composites. J Compos Mater 55(12):1683–1692

    Article  Google Scholar 

  29. Thomason JL, Rudeiros-Fernández JL (2018) A review of the impact performance of natural fiber thermoplastic composites. Front Mater 5:60

    Article  Google Scholar 

  30. Jackson Singh T, Samanta S, Singh H (2017) Influence of kevlar hybridization on dielectric and conductivity of bamboo fiber reinforced epoxy composite. J Nat Fibers 14(6):837–845

    Article  Google Scholar 

  31. Zhou G (1995) Damage mechanisms in composite laminates impacted by a flat-ended impactor. Compos Sci Technol 54(3):267–273

    Article  Google Scholar 

  32. Sharath BN, Yashas Gowda TG, Madhu P, Pradeep Kumar CB, Jain N, Verma A et al (2024) Fabrication of raw and chemically treated biodegradable Luffa aegyptica fruit fibre-based hybrid epoxy composite: a mechanical and morphological investigation. Biomass Convers Biorefinery, pp 1–14

  33. Thyavihalli Girijappa YG, Mavinkere Rangappa S, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:226

    Article  Google Scholar 

  34. Vinod A, Gowda TY, Vijay R, Sanjay MR, Gupta MK, Jamil M et al (2021) Novel Muntingia Calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J Clean Prod 294:126337

    Article  Google Scholar 

  35. Adeyanju CA, Ogunniyi S, Ighalo JO, Adeniyi AG, Abdulkareem SA (2021) A review on Luffa fibres and their polymer composites. J Mater Sci 56(4):2797–2813

    Article  Google Scholar 

  36. Saeed A, Iqbal M (2013) Loofa (Luffa cylindrica) sponge: review of development of the biomatrix as a tool for biotechnological applications. Biotechnol Prog 29(3):573–600

    Article  Google Scholar 

  37. Koçak D, Mistik SI, Akalin M, Merdan N (2015) The use of Luffa cylindrica fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials. Woodhead Publishing, pp 689–699

    Chapter  Google Scholar 

  38. Sathishkumar S, Suresh AV, Nagamadhu M, Krishna M (2017) The effect of alkaline treatment on their properties of jute fiber mat and its vinyl ester composites. Mater Today: Proc 4(2):3371–3379

    Google Scholar 

  39. Yang HR, Kwon H, Lee KB (2011) Fabrication and characterisation of AZ91/SiC composite by pressureless infiltration method. Mater Sci Technol 27(6):1053–1058

    Article  Google Scholar 

  40. Saw SK, Purwar R, Nandy S, Ghose J, Sarkhel G (2013) Fabrication, characterization, and evaluation of luffa cylindrica fiber reinforced epoxy composites. BioResources 8(4):4805–4826

    Article  Google Scholar 

  41. Aidi A, Rehali H, Menasra H, Fadel A, Ddjezza Z, Abdousr A (2023) Activated carbon from walnut shells for efficient removal of humic substances: synthesis, characterization, and adsorption kinetics. NeuroQuantology 21(7):703–717

    Google Scholar 

  42. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19(6):446–453

    Article  Google Scholar 

  43. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3):259–320

    Article  Google Scholar 

  44. Kerni L, Singh S, Patnaik A, Kumar N (2020) A review on natural fiber reinforced composites. Mater Today: Proc 28:1616–1621

    Google Scholar 

  45. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  Google Scholar 

  46. Saravana Kumar A, Maivizhi Selvi P, Rajeshkumar L (2017) Delamination in drilling of sisal/banana reinforced composites produced by hand lay-up process. Appl Mech Mater 867:29–33

    Article  Google Scholar 

  47. Prasad V, Muhammed Hunize CV, Abhiraj RI, Jospeh MA, Sekar K, Ali M (2019) Mechanical properties of flax fiber reinforced composites manufactured using hand layup and compression molding—a comparison. In: Advances in industrial and production engineering: select proceedings of FLAME 2018. Springer, Singapore, pp 781–789

    Google Scholar 

  48. Meenakshi C, Krishnamoorthy AJMTP (2018) Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method. Mater Today Proc 5(13):26934–26940

    Article  Google Scholar 

  49. Akil HM, Omar MF, Mazuki AM, Safiee SZAM, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

    Article  Google Scholar 

  50. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  Google Scholar 

  51. Adeyanju CA, Ogunniyi S, Ighalo JO, Adeniyi AG, Abdulkareem SA (2021) A review on Luffa fibres and their polymer composites. J Mater Sci 56(4):2797–2813

    Article  Google Scholar 

  52. Alhijazi M, Safaei B, Zeeshan Q, Asmael M, Eyvazian A, Qin Z (2020) Recent developments in luffa natural fiber composites. Sustainability 12(18):7683

    Article  Google Scholar 

  53. Mohanta N (2016) Preparation and characterization of Luffa Cylindrica fiber reinforced polymer composite (doctoral dissertation)

    Google Scholar 

  54. Mani P, Dellibabu GV, Anilbasha K, Anbukarsi K (2014) Tensile and flexural properties of Luffa fiber reinforced composite material. Int J Eng Res 3(5)

  55. Arockiasamy FS (2022) Experimental investigation on the effect of fiber volume fraction of sponge gourd outer skin fiber reinforced epoxy composites. Polym Compos 43(10):6932–6942

    Article  Google Scholar 

  56. Da Silva AN, Teixeira SCS, Widal ACC, Coutinho FMB (2001) Mechanical properties of polymer composites based on commercial epoxy vinyl ester resin and glass fiber. Polym Test 20(8):895–899

    Article  Google Scholar 

  57. Kumar S, Prasad L, Patel VK, Kumar V, Kumar A, Yadav A, Winczek J (2021) Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites. Polymers 13(9):1369

    Article  Google Scholar 

  58. El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303

    Article  Google Scholar 

  59. Jariwala H, Jain P (2019) A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinf Plast Compos 38(10):441–453

    Article  Google Scholar 

  60. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 100(20):4903–4906

    Article  Google Scholar 

  61. Alkbir MFM, Sapuan SM, Nuraini AA, Ishak MR (2016) Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos Struct 148:59–73

    Article  Google Scholar 

  62. Devireddy SBR, Biswas S (2017) Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polym Compos 38(7):1396–1403

    Article  Google Scholar 

  63. Alam MM, Ahmed T, Haque MM, Gafur MA, Kabir AH (2008) Mechanical properties of natural fiber containing polymer composites. Polym-Plast Technol Eng 48(1):110–113

    Article  Google Scholar 

  64. Gu H, Miao M (2014) Optimising fibre alignment in twisted yarns for natural fibre composites. J Compos Mater 48(24):2993–3002

    Article  Google Scholar 

  65. Prabhu P, Karthikeyan B, Vannan RRRM, Balaji A (2022) Mechanical, thermal conductivity, biodegradability property, DMA analysis and fractography analysis of nanoclay-cotton fiber/hybrid resin composites. NeuroQuantology 20(22):549

    Google Scholar 

  66. Raj SS, Kuzmin AM, Subramanian K, Sathiamoorthyi S, Kandasamy KT (2021) Philosophy of selecting ASTM standards for mechanical characterization of polymers and polymer composites. Mater Plast 58(3):247–256

    Article  Google Scholar 

  67. Haug R (2018) The practical handbook of compost engineering. Routledge

    Book  Google Scholar 

  68. Siddiqui A, Braden M, Patel MP, Parker S (2010) An experimental and theoretical study of the effect of sample thickness on the shore hardness of elastomers. Dent Mater 26(6):560–564

    Article  Google Scholar 

  69. Mulvaney RL (1996) Nitrogen—inorganic forms. Methods of soil analysis: part 3 chemical methods. 5:1123–1184

  70. Munajad A, Subroto C, Suwarno (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364

    Article  Google Scholar 

  71. Alam SS, Munshi MR, Shufian A, Haque MM, Haque MR, Hasan M et al (2023) Influence of alkalisation and eggshell particles on mechanical, thermal and physical properties of rattan-bamboo fibre reinforced hybrid polyester laminated composite. Adv Mater Process Technol, pp 1–20

  72. Abdel-Hakim A, El-Basheer TM, Abd El-Aziz AM, Afifi M (2021) Acoustic, ultrasonic, mechanical properties and biodegradability of sawdust/recycled expanded polystyrene eco-friendly composites. Polym Test 99:107215

    Article  Google Scholar 

  73. Keeney DR, Nelson DW (1982) Nitrogen-Inorganic forms. In: Miller AL, R. H, Keeney D.R.(eds) Methods of soil analysis part 2: Chemical and microbiological properties. Agronomy 9/2, American society of Agronomy, Madison, WI, pp 643-698

  74. Paul EA, Clark F E (1996) Soil microbiology and biochemistry

    Google Scholar 

  75. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84(8):2042–2050

    Article  Google Scholar 

  76. Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670

    Article  Google Scholar 

  77. Franzluebbers AJ, Stuedemann JA (2010) Surface soil changes during twelve years of pasture management in the southern Piedmont USA. Soil Sci Soc Am J 74(6):2131–2141

    Article  Google Scholar 

  78. Shakeri A, Ghasemian A (2010) Water absorption and thickness swelling behavior of polypropylene reinforced with hybrid recycled newspaper and glass fiber. Appl Compos Mater 17:183–193

    Article  Google Scholar 

  79. Sanjeevi S, Shanmugam V, Kumar S, Ganesan V, Sas G, Johnson DJ et al (2021) Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci Rep 11(1):13385

    Article  Google Scholar 

  80. Munshi MR, Alam SS, Haque MM, Shufian A, Rejaul Haque M, Gafur MA et al (2022) An experimental study of physical, mechanical, and thermal properties of rattan-bamboo fiber reinforced hybrid polyester laminated composite. J Nat Fibers 19(7):2501–2515

    Article  Google Scholar 

  81. Sabarinathan P, Rajkumar K, Gnanavelbabu A (2016) Investigation of mechanical properties of Luffa cylindrical and flax reinforced hybrid polymer composite. J Adv Eng Res 3(2):124–127

    Google Scholar 

  82. Martins GA, Pereira PHF, Mulinari DR (2013) Chemical modification of palm fibres surface with zirconium oxychloride. BioResources 8(4):6373–6382

    Google Scholar 

  83. Rachchh NV, Ujeniya PA, Misra RK (2014) Mechanical characterisation of rattan fibre polyester composite. Procedia Mater Sci 6:1396–1404

    Article  Google Scholar 

  84. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871

    Article  Google Scholar 

  85. Olusegun DS, Stephen A, Adekanye TA (2012) Assessing mechanical properties of natural fibre reinforced composites for engineering applications. J Miner Mater Charact Eng 11(1):780–784

    Google Scholar 

  86. Yousif BF, Wong KJ, El-Tayeb NSM (2007) An investigation on tensile, compression and flexural properties of natural fibre reinforced polyester composites. In: ASME international mechanical engineering congress and exposition, vol 42975, pp 619–624

    Google Scholar 

  87. Prasanna Venkatesh R, Ramanathan K, Srinivasa Raman V (2016) Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fibres Text East Eur

  88. Arrakhiz FZ, El Achaby M, Malha M, Bensalah MO, Fassi-Fehri O, Bouhfid R et al (2013) Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mater Des 43:200–205

    Article  Google Scholar 

  89. García M, Garmendia I, García J (2008) Influence of natural fiber type in eco-composites. J Appl Polym Sci 107(5):2994–3004

    Article  Google Scholar 

  90. Jayamani E, Hamdan S, Rahman MR, Bakri MKB (2014) Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Eng 97:545–554

    Article  Google Scholar 

  91. Jayamani E, Hamdan S, Rahman MR, Bakri MKB (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544

    Article  Google Scholar 

  92. Chowdhury T, Ahmed M, Mahdi E, Haque MR, Haque MM, Gafur MA, Hasan M (2023) An experimental study on mechanical, physical, and thermal properties of waste hair-rattan hybrid fiber-reinforced composite. Biomass Convers Biorefinery:1–14

  93. Haque MM, Rejaul Haque M, Munshi MR, Alam SS, Hasan M, Gafur MA et al (2021) Physicomechanical properties investigation of sponge-gourd and betel nut reinforced hybrid polyester composites. Adv Mater Process Technol 7(2):304–316

    Google Scholar 

  94. Khalid AA (2006) The effect of testing temperature and volume fraction on impact energy of composites. Mater Des 27(6):499–506

    Article  Google Scholar 

  95. Siddika S, Mansura F, Hasan M, Hassan A (2014) Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers Polym 15:1023–1028

    Article  Google Scholar 

  96. Savitha K, Annapoorani GS, Sampath VR, Atalie D (2019) Physical characterization of cellulosic fibres from Sesbania grandiflora stem. Indian Journal of Fibre & Textile Research (IJFTR) 44(4):437–441

    Google Scholar 

Download references

Acknowledgements

The testing facilities required for the study were provided by the Bangladesh Council of Scientific and Industrial Research (BCSIR) and Bangladesh University of Engineering and Technology (BUET). The authors would like to express their gratitude to them.

Author information

Authors and Affiliations

Authors

Contributions

All the authors assisted with the initial idea and concept of the composite design. Md. Muib Hossain Antor, Md Tainjinul Islam Anik, S.M. Masuk Al Faisal, Mohammad Rejaul Haque contributed to the fabrication of the composite. Eshat Ar Rafi, Mahbub Hasan, M. A. Gafur, Md. Abdus Sabur contributed during testing of the composites. All the authors provide insightful comments with recommendations while obtaining data, analyzing results, and creating the final text.

Corresponding author

Correspondence to Mohammad Rejaul Haque.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antor, M.M.H., Anik, M.T.I., Al Faisal, S.M. et al. Mechanical, thermal, chemical, and physical properties of sponge gourd outer skin fiber-reinforced vinyl ester composites. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05728-6

Keywords

Navigation