Skip to main content
Log in

Synthesis and characterization of Fe doped mesoporous Al2O3 by sol–gel method and its use in trichloroethylene combustion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two mesoporous alumina samples were synthesized using the sol–gel method, and these samples were tested as catalysts in trichloroethylene combustion reaction. One alumina sample was doped with Fe to study the influence of a small amount of this agent on the characteristics and properties of alumina as a catalyst. Both catalysts (pure alumina and alumina doped with Fe) were thoroughly characterized by different techniques, such as DTA/TGA, FT-IR, XRD, SEM and TEM, and the porous characterization was conducted using a N2 physisorption technique. The doping agent presented a particular influence on the morphology and textural porosity in the alumina catalyst and therefore, it exhibited different catalytic behavior than the pure alumina catalyst. For both catalysts, the crystalline phase of γ-alumina was reported using XRD technique, and the crystallite size ranged from 7.8 to 12.8 nm. Using TEM images, the alumina catalyst doped with Fe revealed to contain a mixture of three types of iron oxide (maghemite, magnetite and hematite), mainly as roughly spherical nanoparticles. For both alumina catalysts, trichloroethylene catalytic combustion was conducted on a packed bed reactor in air at a temperature range of 50 to 600 °C. The alumina catalyst doped with Fe showed a higher catalytic activity than pure alumina, mainly due to the presence of micropores and grain morphology of flat faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aranzabal A, Ayastuy JL, González JA (2003) Kinetics of the catalytic oxidation of lean trichloroethylene in air over Pd/Alumina. Ind Eng Chem Res 42:6007–6011

    Article  CAS  Google Scholar 

  2. Miranda B, Díaz E, Ordoñez S, Díez FV (2006) Catalytic combustion of trichloroethene over Ru/Al2O3: reaction mechanism and kinetic study. Catal Commun 7:945–949

    Article  CAS  Google Scholar 

  3. Bejenaru N, Lancelot C, Blanchard P, Lamonier C, Rouleau L, Payen E, Dumeignil F, Royer S (2009) Synthesis, characterization, and catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas. Chem Mater 21:522–533

    Article  CAS  Google Scholar 

  4. Livage J, Henry M, Sánchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid St Chem 18:259–341

    Article  CAS  Google Scholar 

  5. Morán-Pineda M, Castillo S, López T, Gómez R, Cordero-Borboa AE, Novaro O (1999) Synthesis, characterization and catalytic activity in the reduction of NO by CO on alumina-zirconia sol-gel derived mixed oxides. Appl Catal, B 21:79–88

    Article  Google Scholar 

  6. Zhao Y, Martens WN, Bostrom TE, Zhu HY, Frost RL (2007) Synthesis, characterization, and surface properties of iron-dope boehmite nanofibers. Langmuir 23:2110–2116

    Article  CAS  Google Scholar 

  7. Epifani M, Carlino E, Blasi C, Giannini C, Tapfer L, Vasanelli L (2001) Sol-gel processing of Au nanoparticles in Bulk 10% B2O3–90% SiO2 Glass. Chem Mater 13:1533–1539

    Article  CAS  Google Scholar 

  8. Wang JA, Bokhimi X, Morales A, Novaro O, López T, Gómez R (1999) Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst. J Phys Chem B 103:299–303

    Article  CAS  Google Scholar 

  9. Aghababazadeh R, Mirhabibi AR, Pourasad J, Brown A, Brydson R, Banijamali S, Mahabad NA (2007) Economical synthesis of nanocrystalline alumina using an environmentally low-cost binder. Surf Sci 601:2864–2867

    Article  CAS  Google Scholar 

  10. Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75:3–15

    Article  CAS  Google Scholar 

  11. Navarri P, Marchal D, Ginestet A (2001) Activated carbon fibre materials for VOC removal. Filtr Sep 38:33–40

    Article  Google Scholar 

  12. Qin YJ, Sheth JP, Sirkar KK (2002) Supported liquid membrane-based pervaporation for VOC removal from water. Ind Eng Chem Res 41:3413–3428

    Article  CAS  Google Scholar 

  13. Zhu XQ, Alonso C, Suidan MT, Cao HW, Kim BJ, Kim BR (1998) The effect of liquid phase on VOC removal in trickle-bed biofilters. Water Sci Technol 38–3:315–322

    Google Scholar 

  14. Dudukovic MP, Larachi F, Mills PL (2002) Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal Rev Sci Eng 44:123–246

    Article  CAS  Google Scholar 

  15. Yamauchi H, Kodama A, Hirose T, Okano H, Yamada K (2007) Performance of VOC abatement by thermal swing honeycomb rotor adsorbers. Ind Eng Chem Res 46:4316–4322

    Article  CAS  Google Scholar 

  16. Intriago L, Diaz E, Ordoñez S, Vega A (2006) Combustion of trichloroetylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance. Microporous Mesoporous Mater 91:161–169

    Article  CAS  Google Scholar 

  17. Wu JC-S, Chang T-Y (1998) VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today 44:111–118

    Article  CAS  Google Scholar 

  18. Jang B-H, Lee S-S, Yeon T-H, Yie J-E (1998) Effects of base metal promoters in VOC catalysts for chlorocarbons and n-Hexane Oxidation. Korean J Chem Eng 15:516–521

    Article  CAS  Google Scholar 

  19. Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Toluene combustion over palladium supported on various metal oxide supports. Appl Catal, B 44:325–331

    Article  CAS  Google Scholar 

  20. Zwinkels M, Jaras S (1993) Catalytic materials for high temperature combustion. Catal Rev-Sci Eng 35:319–358

    Article  CAS  Google Scholar 

  21. Musialik A, Syczewska K (2000) Combustion of Volatile Organic Compounds in two-component mixtures over monolithic perovskite catalysts. Catal Today 59:269–278

    Article  Google Scholar 

  22. De la Rosa JR, Hernández A, Ledezma JJ, Rojas F (2008) Sol–gel synthesis and characterization of novel La, Mn and Fe doped zirconia: catalytic combustion activity of trichloroethylene. Colloids Surf A 315:147–155

    Article  CAS  Google Scholar 

  23. Perry RH, Green DW (2008) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill, Newyork

    Google Scholar 

  24. Digne M, Sautet P (2002) Structure and stability of aluminum hydroxides: a theorical study. J Phys Chem B 106:5155–5162

    Article  CAS  Google Scholar 

  25. Keysar S, Shter G (1997) Heat treatment of alumina aerogels. Chem Mater 9:2464–2467

    Article  CAS  Google Scholar 

  26. Carrier X, Marceau E, Lambert J-F, Che M (2007) Transformations of γ -alumina in aqueous suspensions.1. Alumina chemical weathering studied as a function of pH. J Colloid Interface Sci 308:429–437

    Article  CAS  Google Scholar 

  27. Sakka S (2004) Handbook of sol-gel processing. Kluwer, Dordrecht

    Google Scholar 

  28. Meher T, Basu AK, Ghatak S (2005) Physicochemical characteristics of alumina gel in hydroxyhydrogel and normal form. Ceramics Int 31:831–838

    Article  CAS  Google Scholar 

  29. Paglia G, Buckley CE, Udovic TJ, Rohl AL, Jones F, Maitland CF, Connolly J (2004) Boehmite-Derived γ-Alumina System. 2. Consideration of Hydrogen and Surface Effects. Chem Mater 16:1914–1923

    Article  CAS  Google Scholar 

  30. Ortiz-Landeros J, Contreras-García ME, Pfeiffer H (2009) Synthesis of macroporous ZrO2–Al2O3 mixed oxides with mesoporous walls, using polystyrene spheres as template. J Porous Mater 16:473–479

    Article  CAS  Google Scholar 

  31. Basti H, Tahar LB, Smiri LS, Herbst F, Vaulay M-J, Chau F, Ammar S, Benderbous S (2010) Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341:248–254

    Article  CAS  Google Scholar 

  32. Gregg SJ, Sing KSW (1982) Adsorption, surface and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–61929

    Article  CAS  Google Scholar 

  34. Romm F (2004) Microporous media: synthesis, properties, and modeling. Marcel Dekker, New York, Basel

    Book  Google Scholar 

  35. Finocchio E, Sapienza G, Baldi M, Busca G (2004) Trichloroethylene catalytic conversion over acidic solid catalysts. Appl Catal B Environ 51:143–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financing by CONACYT 58311, PROMEP/103.5/09/1306 P/CA UANL CA-49, PAICyT UANL 1050-05 and 1249-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rivera De la Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucio-Ortiz, C.J., De la Rosa, J.R., Ramirez, A.H. et al. Synthesis and characterization of Fe doped mesoporous Al2O3 by sol–gel method and its use in trichloroethylene combustion. J Sol-Gel Sci Technol 58, 374–384 (2011). https://doi.org/10.1007/s10971-011-2403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2403-1

Keywords

Navigation