Skip to main content
Log in

A new way to prepare tin oxide precursor polymeric gels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent tin oxide gels are elaborated in the isopropoxide/toluene/isopropanol system. The gelation occurs at room temperature without any acid or base additions. The formation of the SnO2 precursor gels polymeric network is evidenced by Fourier transform infrared spectroscopy. The gelation time is studied as a function of the complexing ratio R = [acac]/[Sn(OR)4], the hydrolysis ratio W = [H2O]/[Sn(OR)4], the concentration of tin oxide precursor C = [Sn(OR)4], and the volume fraction of toluene P = (toluene volume) / (total solvent volume).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaal SA, Hupp JT (2000) J Am Chem Soc 122:10956

    Article  CAS  Google Scholar 

  2. Bellingham JR, Philips WA, Adkins CJ (1992) J Mater Sci Lett 11:263

    Article  CAS  Google Scholar 

  3. Ginley DS, Bright C (2000) Mater Res Soc Bull 25:15

    CAS  Google Scholar 

  4. Hagemeyer A, Hogan Z, Schlichter M, Smaka B, Streukens G, Turner H, Volpe A Jr, Weinberg H, Yaccato K (2007) Appl Catal A 317:139

    Article  CAS  Google Scholar 

  5. Walson J, Ihokura K, Coles GS (1993) Meas Sci Technol 4:711

    Article  ADS  Google Scholar 

  6. Suh S, Zhang Z, Chu W-K, Hoffmann DM (1999) Thin Solid Films 345:240

    Article  CAS  ADS  Google Scholar 

  7. Micocci G, Serra A, Siciliano P, Tepore A, Ali-Adib Z (1996) Vaccum 47:1175

    Article  CAS  Google Scholar 

  8. Williams G, Coles GSV (1999) Mater Res Soc Bull 24:25

    CAS  Google Scholar 

  9. Murakami K, Nakajima K, Kaneko S (2007) Thin Solid Films 515:8632

    Article  CAS  ADS  Google Scholar 

  10. Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Thin Solid Films 247:162

    Article  CAS  ADS  Google Scholar 

  11. Park SS, Mackenzie JD (1995) Thin Solid Films 258:268

    Article  CAS  ADS  Google Scholar 

  12. Racheva TM, Critchlow GW (1997) Thin Solid Films 292:299

    Article  CAS  ADS  Google Scholar 

  13. Capone S, Epifani M, Quaranta F, Sicilianon P, Vasanelli L (2001) Thin Solid Films 391:314

    Article  CAS  ADS  Google Scholar 

  14. Daoudi K, Canut B, Blanchin MG, Sandu CS, Teodorescu VS, Roger JA (2002) Mater Sci Eng C 21:313

    Google Scholar 

  15. Puetz J, Aegerter MA, Guzman G (2004) J Sol-Gel Sci Technol 32:125

    Article  CAS  Google Scholar 

  16. Seo M, Akutsu Y, Kagamoto H (2007) Ceram Int 33:625

    Article  CAS  Google Scholar 

  17. Ahmed SF, Ghosh PK, Khan S, Mitra MK, Chattopadhyay KK (2007) Appl Phys A86:139

    ADS  Google Scholar 

  18. Kurz A, Aegerter MA (2008) Thin Solid Films 516:4513

    Article  CAS  ADS  Google Scholar 

  19. Cobianu C, Savaniu C, Buiu O, Dascalu D, Zaharescu M, Parlog C, van den Berg A, Pecz B (1997) Sens Actuators B Chem 43:114

    Article  Google Scholar 

  20. Hamd W, Wu YC, Boulle A, Thune E, Guinebretière R (2009) Thin Solid Films 518:1

    Article  CAS  Google Scholar 

  21. Ray SC, Karanjai MK, DasGupta D (1998) Surf Coat Technol 102:73

    Article  CAS  Google Scholar 

  22. Wu NL, Wu LF, Yang YC, Huang SJ (1996) J Mater Res 11:4

    Article  Google Scholar 

  23. Mihaiu S, Marta L, Zaharescu M (2007) J Eur Ceram Soc 27:551

    Article  CAS  Google Scholar 

  24. Livage J, Henry M, Sanchez C (1988) Prog Sol State Chem 18:259

    Article  CAS  Google Scholar 

  25. Turova NY, Turevskaya EP, Yanovskaya MI, Yanovsky AI, Kessler VG, Tcheboukov DE (1998) Pergamo 17:899

    CAS  Google Scholar 

  26. Hampden-Smith MJ, Wark TA (1992) Coord Chem Rev 112:81

    Article  CAS  Google Scholar 

  27. Diao Y, Walawender WP, Sorensen CM, Klabunde KJ, Ricker T (2002) Chem Mater 14:362

    Article  CAS  Google Scholar 

  28. Ranjit Martyanov I, Demydov D, Uma S, Rodrigues S, Klabunde KJ (2006) J Sol-Gel Sci Technol 40:335

    Article  Google Scholar 

  29. Wu YC, Hamd W, Thune E, Boulle A, Rochas C, Guinebretière R (2009) J Non Cryst Sol 355:951

    Article  CAS  ADS  Google Scholar 

  30. Debsikdar JC (1986) J Non Cryst Sol 86:231

    Article  CAS  ADS  Google Scholar 

  31. Guinebretière R, Dauger A, Lecomte A, Vesteghem H (1992) J Non Cryst Sol 147:542

    Article  ADS  Google Scholar 

  32. Leaustic A, Babonneau F, Livage J (1989) Chem Mater 1:248

    Article  CAS  Google Scholar 

  33. Chandler CD, Fallon GD, Koplick AJ, West BO (1987) Aust J Chem 40:1427

    Article  CAS  Google Scholar 

  34. Monredon S, Cellot A, Ribot F, Sanchez C, Armelao L, Gueneau L, Delattre L (2002) J Mater Chem 12:2396

    Article  Google Scholar 

  35. Agrawal S, Sharma V, Bohra R (2006) J Chem Res 7:426

    Article  Google Scholar 

  36. Toupance T, Babot O, Jousseaume B, Vilaça G (2003) Chem Mater 15:4691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Guinebretiere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamd, W., Boulle, A., Thune, E. et al. A new way to prepare tin oxide precursor polymeric gels. J Sol-Gel Sci Technol 55, 15–18 (2010). https://doi.org/10.1007/s10971-010-2206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2206-9

Keywords

Navigation