Skip to main content
Log in

Design and development of modified tin oxide nanostructures for structural and optical applications

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Tin oxide is a vital industrial substance that is utilised in a variety of applications. Under moderate reaction conditions, a simple and highly effective technique for producing tin oxide modified with oxime by solvent-base liquid-phase addition over tin chloride had been devised. Tin precursors that have been modified with chelating ligands are frequently used to produce tin oxide nanostructures. Acetoxime-modified tin chloride [SnCl2.2[HONC(CH3)2] was efficiently synthesised at room temperature and demonstrated operational simplicity, as evidenced by 1H and 119Sn NMR. The sol–gel method and spray pyrolysis deposition approach were used to convert the precursor, [SnCl2.2[HONC(CH3)2], to tin oxide nanoparticles and the optically transparent (visible reign) film, respectively. The powder XRD pattern of the produced tin oxide nanoparticles implies that tetragonal cassiterite was generated. The scanning electron microscope pictures of the ~ 264 nm thin tin oxide layer reveal homogenous dense film deposition. The transmittance of the films is 87–91% in the visible region, and the band gaps are around 3.26–3.29 eV, making these films appropriate for TCO (transparent conductive oxide) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig.2:
Fig. 3:
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sağlam, H.K., Masat, M., Ertuğrul, M.: SnO2 ultra-thin film gas sensor fabricated by ultrasonic spray pyrolysis (USP) method. AIP Conf. Proc. 2506(1), 080003 (2022)

    Article  Google Scholar 

  2. Periyasamy, M., Kar, A.: Modulating the properties of SnO2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater. Chem. C Mater. 8(14), 4604–4635 (2020)

    Article  Google Scholar 

  3. Yamaura, H., Nakaoka, M., Hirao, S., Fujiwara, A., Yahiro, H.: CO sensing property of transition metal oxide-loaded SnO2 in a reducing atmosphere. Mater. Manuf. Process. 25(5), 350–353 (2010)

    Article  Google Scholar 

  4. Zainudin, S.N.F., Abdullah, H., Markom, M.: Electrochemical studies of tin oxide based-dye-sensitized solar cells (DSSC): a review. J. Mater. Sci. Mater. Electron. 30(6), 5342–5356 (2019)

    Article  Google Scholar 

  5. Yu, Z., Perera, I.R., Daeneke, T., Makuta, S., Tachibana, Y., Jasieniak, J.J., Mishra, A., Bäuerle, P., Spiccia, L., Bach, U.: Indium tin oxide as a semiconductor material in efficient P-type dye-sensitized solar cells. NPG Asia Mater. 8(9), e305–e305 (2016)

    Article  Google Scholar 

  6. Si, M., Andler, J., Lyu, X., Niu, C., Datta, S., Agrawal, R., Ye, P.D.: Indium–tin-oxide transistors with one nanometer thick channel and ferroelectric gating. ACS Nano 14(9), 11542–11547 (2020)

    Article  Google Scholar 

  7. Li, S., Tian, M., Gao, Q., Wang, M., Li, T., Hu, Q., Li, X., Wu, Y.: Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18(10), 1091–1097 (2019)

    Article  Google Scholar 

  8. Afre, R.A., Sharma, N., Sharon, M., Sharon, M.: Transparent conducting oxide films for various applications: a review. Rev. Adv. Mater. Sci. 53(1), 79–89 (2018)

    Article  Google Scholar 

  9. Lyubchyk, A., Vicente, A., Soule, B., Alves, P.U., Mateus, T., Mendes, M.J., Águas, H., Fortunato, E., Martins, R.: Mapping the Electrical properties of ZnO-based transparent conductive oxides grown at room temperature and improved by controlled postdeposition annealing. Adv. Electron. Mater. 2(1), 1500287 (2016)

    Article  Google Scholar 

  10. Kim, J., Murdoch, B.J., Partridge, J.G., Xing, K., Qi, D.-C., Lipton-Duffin, J., McConville, C.F., van Embden, J., Gaspera, E.D.: Ultrasonic spray pyrolysis of antimony-doped tin oxide transparent conductive coatings. Adv. Mater. Interfaces 7(18), 2000655 (2020)

    Article  Google Scholar 

  11. Thirumoorthi, M., Thomas Joseph Prakash, J.: Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 4(1), 124–132 (2016)

    Article  Google Scholar 

  12. Etminan, M., Nabiyouni, G., Ghanbari, D.: Preparation of tin ferrite-tin oxide by hydrothermal, precipitation and auto-combustion: photo-catalyst and magnetic nanocomposites for degradation of toxic Azo-Dyes. J. Mater. Sci. Mater. Electron. 29(3), 1766–1776 (2018)

    Article  Google Scholar 

  13. Chandradass, J., Kim, K.H.: Synthesis and characterization of lithium-doped tin dioxide nanocrystalline powders by emulsion combustion method. Mater. Manuf. Process. 25(9), 939–942 (2010)

    Article  Google Scholar 

  14. Anaraki, E.H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A., Correa-Baena, J.-P.: Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9(10), 3128–3134 (2016)

    Article  Google Scholar 

  15. Sharma, A., Ahmed, A., Singh, A., Oruganti, S.K., Khosla, A., Arya, S.: Review—recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors. J Electrochem Soc 168(2), 027505 (2021)

    Article  Google Scholar 

  16. Mohamad Noh, M.F., Arzaee, N.A., Safaei, J., Mohamed, N.A., Kim, H.P., Mohd Yusoff, A.R., Jang, J., Mat Teridi, M.A.: Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. J. Alloys Compd. 773, 997–1008 (2019)

    Article  Google Scholar 

  17. Ponja, S.D., Williamson, B.A.D., Sathasivam, S., Scanlon, D.O., Parkin, I.P., Carmalt, C.J.: Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J. Mater. Chem. C Mater. 6(27), 7257–7266 (2018)

    Article  Google Scholar 

  18. Shi, X.H., Xu, K.J.: Properties of fluorine-doped tin oxide films prepared by an improved sol-gel process. Mater. Sci. Semicond. Process 58, 1–7 (2017)

    Article  Google Scholar 

  19. Mohana Priya, S., Geetha, A., Ramamurthi, K.: Structural, morphological and optical properties of tin oxide nanoparticles synthesized by sol-gel method adding hydrochloric acid. J. Solgel Sci. Technol. 78(2), 365–372 (2016)

    Article  Google Scholar 

  20. Li, H., Pokhrel, S., Schowalter, M., Rosenauer, A., Kiefer, J., Mädler, L.: The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 215, 389–400 (2020)

    Article  Google Scholar 

  21. Singh, D., Dhayal, V., Saxena, K.K., Saini, A., Goyal, A.: Design and influence of precursor concentration and volume, over quality of alumina coating and their corrosion behavior. In: International Journal on Interactive Design and Manufacturing (IJIDeM), 1–7 (2022)

  22. Singh, D., Goyal, A., Saini, A., Sonewane, S., Saxena, K.K.: Vibration and noise analysis of acetoxime modified TiO2 coating over steel alloy. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01023-8

  23. Dhayal, V., Singh, D., Saini, A., Sonewane, S., Agarwal, D.C.: Vibration and corrosion analysis of modified alumina coating over aluminum alloy. J. Fail. Anal. Prev. 21(1), 130–137 (2021). https://doi.org/10.1007/s11668-020-01045-y

    Article  Google Scholar 

  24. Mayedwa, N., Mongwaketsi, N., Khamlich, S., Kaviyarasu, K., Matinise, N., Maaza, M.: Green synthesis of zin tin oxide (ZnSnO3) nanoparticles using aspalathus linearis natural extracts: structural, morphological, optical and electrochemistry study. Appl. Surf. Sci. 446, 250–257 (2018). https://doi.org/10.1016/j.apsusc.2017.12.161

    Article  Google Scholar 

  25. Sanctis, S., Koslowski, N., Hoffmann, R., Guhl, C., Erdem, E., Weber, S., Schneider, J.J.: Toward an understanding of thin-film transistor performance in solution-processed amorphous zinc tin oxide (ZTO) thin films. ACS Appl. Mater. Interfaces 9(25), 21328–21337 (2017)

    Article  Google Scholar 

  26. Atal, M.K., Sharma, R., Saini, A., Dhayal, V., Nagar, M.: Synthesis and characterization of organotin(IV) semicarbazones: potential precursors for nanosized tin oxide. J. Solgel Sci. Technol. 79(1), 114–121 (2016)

    Article  Google Scholar 

  27. Saini, A., Laxmi Sharma, J., Sharma, R.K., Chaudhary, A., Sharma, D., Dhayal, V.: Zinc oxide derived from zinc(II)/acetoxime system: formation pathway and solar-driven photocatalytic and antimicrobial applications. J. Solgel Sci. Technol. 91(3), 644–653 (2019)

    Article  Google Scholar 

  28. Saini, A., Jat, S.K., Shekhawat, D.S., Kumar, A., Dhayal, V., Agarwal, D.C.: Oxime-modified aluminium(III) alkoxides: potential precursors for γ-alumina nano-powders and optically transparent alumina film. Mater. Res. Bull. 93, 373–380 (2017)

    Article  Google Scholar 

  29. Kumar, A., Kumar, S., Khajuria, Y., Awasthi, S.K.: A comparative study between heterogeneous stannous chloride loaded silica nanoparticles and a homogeneous stannous chloride catalyst in the synthesis of 5-substituted 1H-tetrazole. RSC Adv. 6(79), 75227–75233 (2016)

    Article  Google Scholar 

  30. Safaei-Ghomi, J., Teymuri, R., Shahbazi-Alavi, H., Ziarati, A.: SnCl2/nano SiO2: a green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans. Chin. Chem. Lett. 24(10), 921–925 (2013)

    Article  Google Scholar 

  31. Gurnani, C., Hector, A.L., Jager, E., Levason, W., Pugh, D., Reid, G.: Tin(Ii) fluoride vs. tin(Ii) chloride—a comparison of their coordination chemistry with neutral ligands. Dalton Trans. 42(23), 8364–8374 (2013)

    Article  Google Scholar 

  32. Sivakumar, S., Manikandan, E.: Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method. J. Mater. Sci. Mater. Electron. 30(8), 7606–7617 (2019)

    Article  Google Scholar 

  33. Singh, D., Kundu, V.S., Maan, A.S.: Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique. J. Mol. Struct. 1115, 250–257 (2016)

    Article  Google Scholar 

  34. Bejtka, K., Zeng, J., Sacco, A., Castellino, M., Hernández, S., Farkhondehfal, M.A., Savino, U., Ansaloni, S., Pirri, C.F., Chiodoni, A.: Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2(5), 3081–3091 (2019)

    Article  Google Scholar 

  35. Suvith, V.S., Devu, V.S., Philip, D.: Facile synthesis of SnO2/NiO nano-composites: structural. Magn. Catal. Prop. Ceram Int. 46(1), 786–794 (2020)

    Article  Google Scholar 

  36. Savino, U., Sacco, A., Bejtka, K., Castellino, M., Farkhondehfal, M.A., Chiodoni, A., Pirri, F., Tresso, E.: Well performing Fe–SnO2 for CO2 reduction to HCOOH. Catal. Commun. 163, 106412 (2022). https://doi.org/10.1016/j.catcom.2022.106412

    Article  Google Scholar 

  37. Anusha, Sudarshan Acharya, B., Antony, A., Ani, A., Kityk, I.V., Jedryka, J., Rakus, P., Wojciechowski, A., Poornesh, P., Kulkarni, S.D.: Laser stimulated second and third harmonic optical effects in F: SnO2 nanostructures grown via chemical synthetic route. Opt. Laser Technol. 119, 105636 (2019). https://doi.org/10.1016/j.optlastec.2019.105636

    Article  Google Scholar 

  38. Deotale, A.J., Nandedkar, R.V.: Correlation between particle size, strain and band gap of iron oxide nanoparticles. Mater. Today Proc. 3(6), 2069–2076 (2016). https://doi.org/10.1016/j.matpr.2016.04.110

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Materials Research Centre, MNIT Jaipur for carried out NMR, FESEM, TEM and XRD analysis. Also thankful to Central Analytical Facilities, Manipal University Jaipur for carrying out UV-Vis analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Saini.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6464 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Saini, A., Goyal, A. et al. Design and development of modified tin oxide nanostructures for structural and optical applications. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01229-4

Keywords

Navigation