Skip to main content
Log in

Characterization of CuO phase in SnO2–CuO prepared by the modified Pechini method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The modified Pechini method has been applied to the preparation of nano-structured SnO2 and SnO2:CuO. The sample characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), infrared spectroscopy (IR) and nitrogen adsorption isotherms (BET). The CuO phase in SnO2:CuO samples was successfully characterized by XRD, XPS and IR. The highest degree of crystallinity and subsequently the maximum intensity and area of CuO (002) diffraction peaks were observed for the samples prepared with templates. The morphology and microstructure of the hybrid were studied using SEM. The core level binding energies of Cu 2p, Sn 3d, and O 1s were measured in these samples. The appearance of a satellite peak in the Cu 2p spectra provided definitive evidence for the presence of Cu2+ ions in these samples. The influence of synthesis conditions such as solvent, precursor type, calcinations temperature and time on the detectability of CuO and the morphology and microstructure of the hybrid were also studied. The calcinations conditions had a significant effect on the appearance and intensity of CuO diffraction peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alcántara R, Fernández-Madrigal FJ, Pérez-Vicente C, Tirado JL, Jumas JC, Olivier-Fourcade J (2000) Chem Mater 12:3044

    Article  Google Scholar 

  2. Batta N, Cinquegrani L, Mgno E, Tgliente A, Pizzini S (1992) Sens Actuators B6:253

    Google Scholar 

  3. Maekawa T, Tamaki J, Miura N, Yamazoe N (1994) J Mater Chem 4:1259

    Article  CAS  Google Scholar 

  4. Ihokura K, Watson J (1994) The stannic oxide gas sensor. CRC Press, Boca Raton

    Google Scholar 

  5. Lantto V, Mizsei J (1991) Sens Actuators B5:21

    CAS  Google Scholar 

  6. Zhou X, Cao Q, Huang H, Yang P, Hu Y (2003) Mater Sci Eng B00:1

    Google Scholar 

  7. Tamaki J, Maekawa T, Miura N, Yamazoe N (1992) Sens Actuators B9:197

    CAS  Google Scholar 

  8. Rumyantseva MN, Labeau M, Senateur JP, Delabouglise G, Boulova MN, Gaskov AM (1996) Mater Sci Eng B41:228

    Article  CAS  Google Scholar 

  9. Choe Y-S (2001) Sens Actuators B77:200

    CAS  MathSciNet  Google Scholar 

  10. Esfandyarpor B, Mohajerzadeh S, Khodadadi AA, Robertson MD (2004) IEEE Sens J 4:449

    Article  Google Scholar 

  11. Katti VR, Debnath AK, Muthe KP, Kaur M, Dua AK, Gadkari SC, Gupta SK, Sahni VC (2003) Sens Actuators B96:245

    CAS  Google Scholar 

  12. Vasiliev RB, Rumyantseva MN, Podguzova SE, Ryzhikov AS, Ryabova LI, Gaskov AM (1999) Mater Sci Eng B57:241

    Article  CAS  Google Scholar 

  13. Santilli CV, Pulcinelli SH, Brito GES, Briois V (1999) J Phys Chem B103:2660

    Google Scholar 

  14. Davis SR, Chadwick AV, Wright JD (1998) J Mater Chem 8:2065

    Article  CAS  Google Scholar 

  15. Mehrota RC (1990) J Non-Cryst Solids 121:1

    Article  ADS  Google Scholar 

  16. Majid A, Tunney J, Argue S, Post M (2004) J Sol Gel Sci Technol 32:323

    Article  CAS  Google Scholar 

  17. Majid A, Tunney J, Argue S, Wang D, Post M, Margeson J (2005) J Alloys Compd 398:48

    Article  CAS  Google Scholar 

  18. Choi WK, Cho JS, Song SK, Jung HJ, Koh SK, Yoon KH, Lee CM, Sung MC, Jeong K (1997) Thin Solid Films 304:85

    Article  CAS  ADS  Google Scholar 

  19. Ghimbeu CM, van Landschoot RC, Schoonman J, Lumbreras M (2007) J Eur Ceram Soc 27:207

    Article  CAS  Google Scholar 

  20. Majid A, Tunney J, Post M, Margeson J (2006) J Sol Gel Sci Technol 38:271

    Article  CAS  Google Scholar 

  21. Sanchez C, Soler-Illia G, Ribot F, Grosso D (2003) Chimie 6:1131

    CAS  Google Scholar 

  22. Schuth F (2001) Chem Mater 13:3184

    Article  Google Scholar 

  23. Peng Z, Mahone KA, Liu M (2000) J Mater Sci Lett 19:1473

    Article  CAS  Google Scholar 

  24. Bruker AXS (2000) Topas V2.0: general profile and structure analysis software for powder diffraction data, user manual. Bruker AXS, Karlstruhe

    Google Scholar 

  25. Balzar D (1999) Defect and microstructure analysis from diffraction. In: Snyder RL, Bunge HJ, Fiala J (eds) International union of crystallography monographs on crystallography no. 10. Oxford University Press, New York, p 94

    Google Scholar 

  26. Shaheen WM, Selim MM (1998) Thermochimica Acta 322:117

    Article  CAS  Google Scholar 

  27. Rumyantseva M, Labeau M, Delabouglise G, Ryabova L, Kutsenoka I, Gaskov A (1997) J Mater Chem 7:1785

    Article  CAS  Google Scholar 

  28. Francisco MSP, Nascente PAP, Mastelaro VR, Florentino AO (2001) J Vac Sci Technol A 19:1150

    Article  CAS  ADS  Google Scholar 

  29. Rumyantseva MN, Safonova OS, Boulova MN, Ryabova LI, Gaśkov AM (2003) Russ Chem Bull Int Ed 52:1217

    Article  CAS  Google Scholar 

  30. Fang G, Liu Z, Zhang Z, Hu Y, Ashur IA, Yao KL (1996) Phys Status Solidi A Appl Res 156:15

    Article  CAS  Google Scholar 

  31. Zhang G, Liu M (1999) J Mater Sci 34:3213

    Article  CAS  Google Scholar 

  32. Bordoni S, Castellani F, Cavani F, Trifiro F (1994) J Chem Soc Faraday Trans 90(19):2981

    Article  CAS  Google Scholar 

  33. Song KC, Kang Y (2000) Mater Lett 42:283

    Article  CAS  Google Scholar 

  34. Scarlat O, Susana-Mihaiu O, Zaharescu M (2002) J Eur Ceram Soc 22:1839

    Article  CAS  Google Scholar 

  35. Mihaiu S, Scarlat O, Aldica G, Zaharescu M (2001) J Eur Ceram Soc 21:1801

    Article  CAS  Google Scholar 

  36. Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY (2006) J Crystal Growth 294:278

    Article  CAS  ADS  Google Scholar 

  37. Ocena J, Serna CJ (1991) Spectrochim Acta 47A:765

    Google Scholar 

  38. Dieguez A, Romano-Rodriguez A, Morante JR, Weimar U, Schweizer-Berberich M, Gopel W (1996) Sens Actuators B31:1

    CAS  Google Scholar 

  39. Poznyak SK, Kulak AI (2000) Electrochim Acta 45:1595

    Article  CAS  Google Scholar 

  40. Choe Y-S, Chung JH, Kim DS, Baik HK (1999) Surf Coat Technol 112:267

    Article  CAS  Google Scholar 

  41. Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR (2002) J Phys Chem B106:6921

    Google Scholar 

  42. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925

    Google Scholar 

  43. Shimizu K, Maeshima H, Yoshida H, Satsuma A, Hattori T (2000) Phys Chem Chem Phys 2:2435

    Article  CAS  Google Scholar 

  44. Indovina V, Occhiuzzi M, Pietrogiacomi D, Tuti S (1999) J Phys Chem B 103:9967

    Article  CAS  Google Scholar 

  45. Khattak GD, Salim MA, Wenger LE, Gilani AH (2000) J Non-Crystalline Solids 262:66

    Article  CAS  ADS  Google Scholar 

  46. Dimitrov V, Komatsu T (2002) J Solid State Chem 163:100

    Article  CAS  ADS  Google Scholar 

  47. Salim MA, Khattak GD, Tabet N, Wenger LE (2003) J Electr Spectrosc Relat Phenom 128:75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Gordon Chan for some technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Majid.

Additional information

Issued as NRCC No. 51757.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majid, A., Tunney, J., Argue, S. et al. Characterization of CuO phase in SnO2–CuO prepared by the modified Pechini method. J Sol-Gel Sci Technol 53, 390–398 (2010). https://doi.org/10.1007/s10971-009-2108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2108-x

Keywords

Navigation