Skip to main content
Log in

Preparation and methodology for chemical mapping of sol–gel thin films containing lysozyme

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gels are seeing widespread interest as suitable materials for the immobilization of biomolecules in applications ranging from optical coatings to specialty biocatalysts. Although there are numerous studies that have characterized these materials in terms of their macroscopic properties, few studies have examined and correlated these properties at the microscopic level. This study describes a spin-coating technique for the preparation of aluminum-supported sol–gel thin films containing immobilized lysozyme [E.C. 3.2.1.17] that are suitable for chemical mapping using FTIR microscopy operating in reflectance mode. This type of information can then be used to understand a variety of aspects of these materials which can be used for optimal engineering of these materials, as well as insightful design and modeling. A data analysis method was developed to extract information on chemical speciation and domain information on the materials from FTIR data matrices. Results from these studies indicated that, contrary to what might be expected, these sol–gels are not homogeneous on the microscopic level. Instead, they are heterogeneous in both the distribution of lysozyme and hydrophobic monomers at the scale investigated (20 μm resolution). The method described here has promise in terms of providing a non-invasive approach of chemically mapping concentrations of proteinaceous and related substances as well as chemical domains in situ in sol–gel thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Clark DS (1994) Trends Biotechnol 12:439. doi:10.1016/0167-7799(94)90018-3

    Article  PubMed  CAS  Google Scholar 

  3. Jürgen-Lohmann DL, Legge RL (2006) Enzyme Microb Technol 39:626. doi:10.1016/j.enzmictec.2005.11.015

    Article  Google Scholar 

  4. Gill I, Ballesteros A (2000) Trends Biotechnol 18:282. doi:10.1016/S0167-7799(00)01457-8

    Article  PubMed  CAS  Google Scholar 

  5. Jin W, Brennan JD (2002) Anal Chim Acta 461:1. doi:10.1016/S0003-2670(02)00229-5

    Article  CAS  Google Scholar 

  6. Pierre AC (2004) Biocat Biotransf 22:145. doi:10.1080/10242420412331283314

    Article  MATH  CAS  MathSciNet  Google Scholar 

  7. Günzler H, Gremlich HU (2002) IR spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  8. Gremlich HU, Yan B (2001) Infrared and Raman spectroscopy of biological materials. Marcel Dekker, New York

    Google Scholar 

  9. Schultz CP (2001) Spectroscopy 16:24

    CAS  Google Scholar 

  10. Wetzel DL, LeVine SM (1999) Science 285:1225. doi:10.1126/science.285.5431.1224

    Article  Google Scholar 

  11. Bhargava R, Wall BG, Koenig JL (2000) Appl Spectrosc 54:470. doi:10.1366/0003702001949870

    Article  ADS  CAS  Google Scholar 

  12. Bhargava R, Wang SQ, Koenig JL (2003) Adv Polym Sci 163:137

    CAS  Google Scholar 

  13. Sammon C, Boussetta S, Melia C (2002) Macromol Symp 184:357. doi:10.1002/1521-3900(200208)184:1<357::AID-MASY357>3.0.CO;2-5

    Article  CAS  Google Scholar 

  14. Mei Y, Miller L, Gao W, Gross RA (2003) Biomacromolecules 4:70. doi:10.1021/bm025611t

    Article  PubMed  CAS  Google Scholar 

  15. Kistler SF, Schweizer PM (1997) Liquid film coating. Chapman & Hall, London

    Google Scholar 

  16. Huang YY, Chou KS (2003) Ceram Int 29:485. doi:10.1016/S0272-8842(02)00191-8

    Article  CAS  Google Scholar 

  17. Taylor JF (2001) Met Finish 99:16. doi:10.1016/S0026-0576(01)80527-4

    Article  CAS  Google Scholar 

  18. Clifford JS, Legge RL (2005) Biotechnol Bioeng 92:231. doi:10.1002/bit.20595

    Article  PubMed  CAS  Google Scholar 

  19. Wetzel DL, Striova J, Higgins DA, Collinson MM (2004) Vib Spectrosc 35:153. doi:10.1016/j.vibspec.2003.12.018

    Article  CAS  Google Scholar 

  20. Higgins DA, Collinson MM (2005) Langmuir 21:9023. doi:10.1021/la050384c

    Article  PubMed  CAS  Google Scholar 

  21. Durrani CM, Donald AM (1995) Carbohydr Polym 28:297. doi:10.1016/0144-8617(95)00107-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. James Forrest and James Chang from the Polymer Physics group at the University of Waterloo, Waterloo, ON for sharing their spin coating equipment and expertise. RLL and LCS are grateful for funding from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo C. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgen-Lohmann, D.L., Nacke, C., Legge, R.L. et al. Preparation and methodology for chemical mapping of sol–gel thin films containing lysozyme. J Sol-Gel Sci Technol 50, 77–86 (2009). https://doi.org/10.1007/s10971-009-1893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1893-6

Keywords

Navigation