Skip to main content
Log in

Relationship between the microstructure, structure and magnetic properties in Ni3(XO4)2 orthophosphate and orthovanadate obtained by two different preparation methods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Powders of composition Ni3(XO4)2 with X = P and V were synthesized by both the ceramic conventional and the Pechini-type in situ polymerizable complex (IPC) method. The Pechini-type IPC technique produces these materials as single phases at reduced temperatures (750–810 °C) as opposed to the conventional solid-state reaction methods in which processing temperatures higher than 800 °C are usually required to obtain a single-phase of these materials. Reflections peaks of the samples obtained in both cases can be indexed well with the standard patterns for Ni3(PO4)2 and Ni3(VO4)2 compounds. The lattice parameters of these materials were calculated by the Rietveld refinement method from X-ray diffraction data (XRD). The average crystal size as well as the crystallinity and morphology of the powder samples were characterized by scanning electron microscopy (SEM). The results show a clearly minor particle size by using the Pechini-IPC method than the ceramic one. Moreover, the magnetic behaviour was studied on powered samples by using magnetic susceptibility data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barré M, Crosnier-López MP et al (2007) J Solid State Chem 180:1011

    Article  Google Scholar 

  2. Weiliu F, Xinyu S et al (2007) J Solid State Chem 180:284

    Article  Google Scholar 

  3. Descamps M, Duhoo T et al (2008) J Eur Ceram Soc 28:149

    Article  CAS  Google Scholar 

  4. Anders GN (1982) Am Mineral 67:826

    Google Scholar 

  5. Forsyth JB, Wilkinson C et al (1988) J Phys C Solid State Phys 21:2005

    Article  CAS  Google Scholar 

  6. Anders GN (1984) Acta Cryst B 40:191

    Article  Google Scholar 

  7. Isasi J (2001) J Alloys Compd 322:89

    Article  CAS  Google Scholar 

  8. Henry FP, Weller MT et al (2003) J Appl Cryst 36:1361

    Article  CAS  Google Scholar 

  9. Massa W, Yakubovich OV (2005) Solid State Sci 7:950

    Article  CAS  Google Scholar 

  10. Fukuda K, Iwata T et al (2006) J Solid State Chem 179:3870

    Article  CAS  Google Scholar 

  11. Escobal J, Pizarro JI et al (2005) J Solid State Chem 178:2626

    Article  CAS  Google Scholar 

  12. Kitamura N, Amezawa K et al (2004) J Electrochem Soc 152:A658

    Article  Google Scholar 

  13. Fong SK, Donald IW et al (2007) J Alloys Compd 444–445:424

    Article  Google Scholar 

  14. Franger S, Le Cras F et al (2003) J Powder Sources 119–121:252

    Article  Google Scholar 

  15. Karpowich L, Wilcke S et al (2007) J Solid State Chem 180:840

    Article  CAS  Google Scholar 

  16. Zhang H, Lü M et al (2007) Mater Res Bull 42:1145

    Article  CAS  Google Scholar 

  17. Kakihana M, Yoshumura M (1999) Bull Chem Jpn 72:1427

    Article  CAS  Google Scholar 

  18. Schwartz RW (1997) Chem Mater 9:2325

    Article  CAS  Google Scholar 

  19. Pérez-Estébanez M, Pastrana-Fábregas R et al (2006) J Mater Res 21:1427

    Article  Google Scholar 

  20. Pastrana-Fábregas R, Isasi-Marín J et al (2006) J Mater Res 21:2255

    Article  Google Scholar 

  21. Pechini MP (1967) US Patent no. 3:330, 11 July

  22. Anderson HU, Pennell MJ, Guha LP (1987) In: Messing GL, Mazdiyasni KS, McCauley JW, Harber RA (eds) Advances in ceramics, ceramic powder science, vol 21. Am. Ceram. Soc., Westerville, OH, p 91

  23. Lessing PA (1989) Am Ceram Soc Bull 168:1002

    Google Scholar 

  24. Kakihana M (1996) J Sol-Gel Sci Technol 6:7

    Article  CAS  Google Scholar 

  25. Mariappan CR, Galven C et al (2006) J Solid State Chem 179:450

    Article  CAS  Google Scholar 

  26. Roisnel T, Rodriguez Carvajal J, WinPLOTR, plotr@llb.saclay.cea.fr, http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm

  27. Shannon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the CICYT to the project MAT2006-13459-CO2-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pérez-Estébanez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Estébanez, M., Isasi-Marín, J. Relationship between the microstructure, structure and magnetic properties in Ni3(XO4)2 orthophosphate and orthovanadate obtained by two different preparation methods. J Sol-Gel Sci Technol 47, 326–334 (2008). https://doi.org/10.1007/s10971-008-1766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1766-4

Keywords

Navigation