Skip to main content
Log in

Electrospun gelatin nanofibers in situ composite with ZIF-67 for eco-friendly and efficient uranium removal

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The development of environmentally friendly, operationally simple, and easily separable adsorbents for uranium removal from wastewater holds significant importance. The biopolymer gelatin (Gel) derived from animal collagen has poor water stability, limiting its application in wastewater treatment. By in-situ compositing with ZIF-67, a nitrogen-rich and stable metal–organic framework structure introduced onto the surface of gelatin fibers enhanced the uranium adsorption capacity of gelatin nanofibers and improved the water stability of these fibers. Furthermore, through the natural polyphenolic tannic acid tanning process, it is possible to further increase selectivity of gelatin composite fibers. The gelatin composite nanofibers Gel/ZIF-67 and T-Gel/ZIF-67 were characterized using SEM, FT-IR, XRD, XPS, and contact angle. Adsorption of uranium on both nanofibers were significantly influenced by pH but minimally affected by ionic strength, indicating the inner-sphere surface complexation. The adsorption of uranium onto Gel/ZIF-67 and T-Gel/ZIF-67 followed the Langmuir isotherm model, with theoretical adsorption capacities reaching up to 608.21 mg g−1 and 612.24 mg g−1, respectively. Kinetic modeling analysis revealed that chemical adsorption played a dominant role during the adsorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Abney CW, Mayes RT, Saito T et al (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    Article  CAS  PubMed  Google Scholar 

  2. Edwards C, Oliver A (2000) Uranium processing: a review of current methods and technology. Jom 52:12–20

    Article  CAS  Google Scholar 

  3. Anke M, Seeber O, MüLLER R et al (2009) Uranium transfer in the food chain from soil to plants, animals and man. Geochemistry 69:75–90

    Article  CAS  Google Scholar 

  4. Dulama M, Iordache M, Deneanu N (2013) Treatment of uranium contaminated wastewater–a review

  5. Banala UK, Das NPI, Toleti SR (2021) Microbial interactions with uranium: towards an effective bioremediation approach. Environ Technol Innov 21:101254

    Article  CAS  Google Scholar 

  6. Pardoux R, Sauge-Merle S, Lemaire D et al (2012) Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation. PLoS ONE. https://doi.org/10.1371/journal.pone.0041922

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. Environ Sci Technol. https://doi.org/10.1021/es4002357

    Article  PubMed  Google Scholar 

  8. Gao M, Zhu G, Gao C (2014) A review: adsorption materials for the removal and recovery of uranium from aqueous solutions. Energy Environ Focus 3(3):219–226

    Article  Google Scholar 

  9. Ma Y, Qi P, Ju J et al (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos B Eng 162:671–677

    Article  CAS  Google Scholar 

  10. Chen J, Song Y, Sheng Y et al (2017) Luminescence properties and Judd-Ofelt analysis of SiO2: Ln3+ (Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method. J Alloy Compd 716:144–155

    Article  CAS  Google Scholar 

  11. Wang N, Pang H, Yu S et al (2019) Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: a review. Acta Chim Sinica 77(2):143

    Article  CAS  Google Scholar 

  12. Chen L, Zhao D, Chen S et al (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium (VI) removal. J Colloid Interface Sci 472:99–107

    Article  CAS  PubMed  Google Scholar 

  13. Alahabadi A, Singh P, Raizada P et al (2020) Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf A 607:125516

    Article  CAS  Google Scholar 

  14. Sitko R, Musielak M, Zawisza B et al (2016) Graphene oxide/cellulose membranes in adsorption of divalent metal ions. RSC Adv 6(99):96595–96605

    Article  CAS  Google Scholar 

  15. Meng J, Lin X, Zhou J et al (2019) Preparation of tannin-immobilized gelatin/PVA nanofiber band for extraction of uranium (VI) from simulated seawater. Ecotoxicol Environ Saf 170:9–17

    Article  CAS  PubMed  Google Scholar 

  16. An F-Q, Wu R-Y, Li M et al (2017) Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: kinetics, isotherms and thermodynamics. React Funct Polym 118:42–50

    Article  CAS  Google Scholar 

  17. Alexandratos SD, Zhu X, Florent M et al (2016) Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Ind Eng Chem Res 55(15):4208–4216

    Article  CAS  Google Scholar 

  18. Xiang-Xue W, Shu-Jun Y, Xiang-Ke W (2019) Removal of radionuclides by metal-organic framework-based materials. J Inorg Mater 34(1):17–26

    Article  Google Scholar 

  19. Chi F, Zhang S, Wen J et al (2019) Functional polymer brushes for highly efficient extraction of uranium from seawater. J Mater Sci 54(4):3572–3585

    Article  CAS  Google Scholar 

  20. Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  Google Scholar 

  21. Pang L-J, Zhang L-J, Hu J-T et al (2017) High-performance functionalized polyethylene fiber for the capture of trace uranium in water. J Radioanal Nuclear Chem 314:2393–2403

    Article  CAS  Google Scholar 

  22. Cheng J, Guo H, Yang X et al (2021) Phosphotungstic acid-modified zeolite imidazolate framework (ZIF-67) as an acid-base bifunctional heterogeneous catalyst for biodiesel production from microalgal lipids. Energy Convers Manag 232:113872

    Article  CAS  Google Scholar 

  23. Sankar SS, Karthick K, Sangeetha K et al (2019) Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review. ACS Omega. https://doi.org/10.1021/acsomega.9b03615

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Yang W, Gu D et al (2019) In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U (VI). Front Chem 7:607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Su S, Che R, Liu Q et al (2018) Zeolitic Imidazolate framework-67: a promising candidate for recovery of uranium (VI) from seawater. Colloids Surf A 547:73–80

    Article  CAS  Google Scholar 

  26. Deng G, Zhang Y, Luo X et al (2018) Direct extraction of U (VI) from a simulated saline solution by alkali-activated collagen fiber. J Radioanal Nucl Chem 318:1109–1118

    Article  CAS  Google Scholar 

  27. Lee SY, Jeong YJ, Park WH (2022) Poly (vinyl alcohol) nanofibrous membranes via green electrospinning and tannin coating for selective removal of Pb (II) ion. Chemosphere 307:135719

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Tsouris C, Oyola Y et al (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53(14):6076–6083

    Article  CAS  Google Scholar 

  29. Li R, Li Y, Zhang M et al (2018) Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions. Molecules 23(6):1245

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang M, Gao Q, Yang C et al (2016) Preparation of amidoxime-based nylon-66 fibers for removing uranium from low-concentration aqueous solutions and simulated nuclear industry effluents. Ind Eng Chem Res 55(40):10523–10532

    Article  CAS  Google Scholar 

  31. Li Y, Dai Y, Tao Q et al (2022) Synthesis and characterization of amino acid-functionalized chitosan/poly (vinyl alcohol) for effective adsorption of uranium. J Radioanal Nucl Chem 331(11):4753–4765

    Article  CAS  Google Scholar 

  32. Kuntaiah Kuncham KK, Sajitha Nair SN, Smeer Durani SD et al (2017) Efficient removal of uranium (VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5279-x

    Article  Google Scholar 

  33. Fan Q, Shao D, Lu Y et al (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni (II) to Na–attapulgite. Chem Eng J 150(1):188–195

    Article  CAS  Google Scholar 

  34. Huang Z-M, Zhang Y-Z, Kotaki M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  35. Kostakova E, Meszaros L, Gregr J (2009) Composite nanofibers produced by modified needleless electrospinning. Mater Lett 63(28):2419–2422

    Article  CAS  Google Scholar 

  36. Li F, Li D, Li X et al (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    Article  CAS  Google Scholar 

  37. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  38. Das S, Brown S, Mayes RT et al (2016) Novel poly (imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135

    Article  CAS  Google Scholar 

  39. Tao X, Fang Y (2022) Preparation of amidoxime modified calixarene fiber for highly efficient adsorption of uranium (VI). Sep Purif Technol 303:122257

    Article  CAS  Google Scholar 

  40. Keshtkar AR, Irani M, Moosavian MA (2013) Removal of uranium (VI) from aqueous solutions by adsorption using a novel electrospun PVA/TEOS/APTES hybrid nanofiber membrane: comparison with casting PVA/TEOS/APTES hybrid membrane. J Radioanal Nucl Chem 295:563–571

    Article  CAS  Google Scholar 

  41. Şenol ZM, Şimşek S, Ulusoy Hİ et al (2020) Insight from adsorption properties of Xylidyl Blue embedded hydrogel for effective removal of uranyl: experimental and theoretical approaches. Polym Testing 88:106566

    Article  Google Scholar 

  42. Chen X, Wan C, Yu R et al (2020) Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater. Desalination 486:114447

    Article  CAS  Google Scholar 

  43. Ren B, Fan M, Tan L et al (2016) Electrospinning synthesis of porous Al2O3 nanofibers by pluronic P123 triblock copolymer surfactant and properties of uranium (VI)-sorption. Mater Chem Phys 177:190–197

    Article  CAS  Google Scholar 

  44. Alali KT, Tan S, Zhu J et al (2024) High mechanical property and hydrophilic electrospun poly amidoxime/poly acrylonitrile composite nanofibrous mats for extraction uranium from seawater. Chemosphere 351:141191

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Chu N, Shen Y et al (2021) Enhancing U (VI) adsorptive removal via amidoximed polyacrylonitrile nanofibers with hierarchical porous structure. Colloid Polym Sci 299:25–35

    Article  CAS  Google Scholar 

  46. Zhang G, Wang X, Huang C et al (2024) Amidoxime functional EVOH nanofibers for uranium extraction from seawater. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.3c03985

    Article  Google Scholar 

  47. Kushwaha S, Sreedhar B, Padmaja P (2012) XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U (VI) to U (V) and U (IV) on Borassus flabellifer-based adsorbents. Langmuir 28(46):16038–16048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Jiangxi Province of China (20224BAB203030, 20212ACB213001, 20202BABL213001), the National Natural Science Foundation of China (22066001).

Funding

Funding was provided by the Natural Science Foundation of Jiangxi Province of China (Grant numbers: 20224BAB203030, 20212ACB213001, 20202BABL213001), the National Natural Science Foundation of Chin (Grant number: 22066001).

Author information

Authors and Affiliations

Authors

Contributions

Wei Dai: Investigation, Data curation, Writing – original draft, Software. Ying Dai: Supervision, Writing – review & editing. Chenglei Fang: Methodology. Lin Xu: Methodology.Yusheng Wang: Software. Haiyan Zhou: Resources. Xing Zhong: Software. Zhuyao Li: Situational analysis. Qinqin Tao: Methodology.

Corresponding authors

Correspondence to Ying Dai, Xing Zhong or Qinqin Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Dai, Y., Fang, C. et al. Electrospun gelatin nanofibers in situ composite with ZIF-67 for eco-friendly and efficient uranium removal. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09516-4

Keywords

Navigation