Skip to main content
Log in

Functional polymer brushes for highly efficient extraction of uranium from seawater

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Uranium extraction from seawater provides the potential for a long-term green fuel supply for nuclear energy. However, the successful extraction of uranium from seawater is challenging because of the low uranium concentrations in seawater. Herein, we report poly(acrylamidoxime-co-acrylic acid) brush (PAO-co-AA)-based adsorbents that can highly efficiently extract and recover uranium from seawater. The PAO-co-AA-grafted fibers were fabricated by grafting of acrylonitrile and tert-butyl acrylate on poly(vinyl chloride) fibers via ARGET–ATRP method, followed by amidoximation and hydrolysis. The ARGET–ATRP method allowed for the synthesis of controllable polymer brushes with various grafting degrees (665–5908%) and thicknesses (15.1–56.3 µm) by varying the monomer concentrations during grafting. The uranium adsorption capacities of the grafted fibers were strongly affected by the grafting degree but independent of the surface area. The uranium adsorption capacities increased from 79 to 370 mg g−1 as the grafting degree increased from 665 to 3749%. The high adsorption performance can be attributed to the stretching of the polymer chain in the polymer brushes, which allows for full access of uranium ion to uranium-binding groups. The adsorbents demonstrated high uranium adsorption capacity of 5.4 mg g−1 using natural seawater in a batch adsorption mode after contact of 27 days, which is higher than that of most other adsorbents. The findings provide a new insight into the relationship between the structure and adsorption property and foreshadow the potential to use polymer brush-based adsorbents for uranium extraction from seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abney CW, Liu S, Lin W (2013) Tuning amidoximate to enhance uranyl binding: a density functional theory study. J Phys Chem A 117(45):11558–11565

    Article  CAS  Google Scholar 

  2. Singhal P, Jha SK, Pandey SP, Neogy S (2017) Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J Hazard Mater 335:152–161

    Article  CAS  Google Scholar 

  3. Zhu J, Liu Q, Li Z, Liu J, Zhang H, Li R, Wang J (2018) Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J Hazard Mater 353:9–17

    Article  CAS  Google Scholar 

  4. Budnyak TM, Strizhak AV, Gładysz-Płaska A, Sternik D, Komarov IV, Kołodyńska D, Majdan M, Tertykh VA (2016) Silica with immobilized phosphinic acid-derivative for uranium extraction. J Hazard Mater 314:326–340

    Article  CAS  Google Scholar 

  5. Zarrougui R, Mdimagh R, Raouafi N (2018) Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. J Hazard Mater 342:464–476

    Article  CAS  Google Scholar 

  6. De Decker J, Folens K, De Clercq J, Meledina M, Van Tendeloo G, Du Laing G, Van Der Voort P (2017) Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. J Hazard Mater 335:1–9

    Article  Google Scholar 

  7. Li R, Che R, Liu Q, Su S, Li Z, Zhang H, Liu J, Liu L et al (2017) Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. J Hazard Mater 338:167–176

    Article  CAS  Google Scholar 

  8. Davies RV, Kennedy J, McIlroy RW, Spence R, Hill KM (1964) Extraction of uranium from sea water. Nature 203:1110

    Article  Google Scholar 

  9. Tabushi I, Kobuke Y, Nishiya T (1979) Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 280:665

    Article  CAS  Google Scholar 

  10. Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li CJ, Liu J et al (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat Chem 6:236

    Article  CAS  Google Scholar 

  11. Liu C, Hsu P-C, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J et al (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007

    Article  CAS  Google Scholar 

  12. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    Article  CAS  Google Scholar 

  13. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E et al (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48(3):367–387

    Article  CAS  Google Scholar 

  14. Khan N, Tuzen M, Kazi TG (2017) Simple and rapid dual-dispersive liquid-liquid microextraction as an innovative extraction method for uranium in real water samples prior to the determination of uranium by a spectrophotometric technique. J AOAC Int 100(6):1848–1853

    Article  CAS  Google Scholar 

  15. Saleh TA, Naeemullah M Tuzen, Sarı A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227

    Article  CAS  Google Scholar 

  16. Bağda E, Tuzen M, Sarı A (2017) Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). J Environ Radioact 175–176:7–14

    Article  Google Scholar 

  17. Tuzen M, Bagda E, Hazer B (2016) Solid phase extraction of uranium on a new brush type graft copolymer and spectrophotometric determination of its in water samples. J Radioanal Nucl Chem 310(3):1255–1263

    Article  CAS  Google Scholar 

  18. Vukovic S, Watson LA, Kang SO, Custelcean R, Hay BP (2012) How amidoximate binds the uranyl cation. Inorg Chem 51(6):3855–3859

    Article  CAS  Google Scholar 

  19. Yue Y, Mayes Richard T, Kim J, Fulvio Pasquale F, Sun XG, Tsouris C, Chen J, Brown S et al (2013) Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew Chem Int Ed 52(50):13458–13462

    Article  CAS  Google Scholar 

  20. Chouyyok W, Pittman JW, Warner MG, Nell KM, Clubb DC, Gill GA, Addleman RS (2016) Surface functionalized nanostructured ceramic sorbents for the effective collection and recovery of uranium from seawater. Dalton Trans 45(28):11312–11325

    Article  CAS  Google Scholar 

  21. Gunathilake C, Gorka J, Dai S, Jaroniec M (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3(21):11650–11659

    Article  CAS  Google Scholar 

  22. Gorka J, Mayes RT, Baggetto L, Veith GM, Dai S (2013) Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater. J Mater Chem A 1(9):3016–3026

    Article  CAS  Google Scholar 

  23. Wang F, Li H, Liu Q, Li Z, Li R, Zhang H, Liu L, Emelchenko GA et al (2016) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep 6:19367

    Article  CAS  Google Scholar 

  24. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  25. Li B, Sun Q, Zhang Y, Abney CW, Aguila B, Lin W, Ma S (2017) Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl Mater Interfaces 9(14):12511–12517

    Article  CAS  Google Scholar 

  26. Bae JY, Lee H-J, Choi WS (2016) Cube sugar-like sponge/polymer brush composites for portable and user-friendly heavy metal ion adsorbents. J Hazard Mater 320:133–142

    Article  CAS  Google Scholar 

  27. Lebedeva IO, Zhulina EB, Leermakers FAM, Borisov OV (2017) Dendron and hyperbranched polymer brushes in good and poor solvents. Langmuir 33(5):1315–1325

    Article  CAS  Google Scholar 

  28. Galvin CJ, Genzer J (2016) Swelling of hydrophilic polymer brushes by water and alcohol vapors. Macromolecules 49(11):4316–4329

    Article  CAS  Google Scholar 

  29. Srinivasan N, Bhagawati M, Ananthanarayanan B, Kumar S (2014) Stimuli-sensitive intrinsically disordered protein brushes. Nat Commun 5:5145

    Article  CAS  Google Scholar 

  30. Zhou T, Qi H, Han L, Barbash D, Li CY (2016) Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nat Commun 7:11119

    Article  Google Scholar 

  31. Milner ST (1991) Polymer brushes. Science 251(4996):905

    Article  CAS  Google Scholar 

  32. Farrukh A, Akram A, Ghaffar A, Hanif S, Hamid A, Duran H, Yameen B (2013) Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation. ACS Appl Mater Interfaces 5(9):3784–3793

    Article  CAS  Google Scholar 

  33. Das S, Oyola Y, Mayes RT, Janke CJ, Kuo LJ, Gill G, Wood JR, Dai S (2016) Extracting uranium from seawater: promising AI Series adsorbents. Ind Eng Chem Res 55(15):4103–4109

    Article  CAS  Google Scholar 

  34. Hu J, Ma H, Xing Z, Liu X, Xu L, Li R, Lin C, Wang M et al (2016) Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind Eng Chem Res 55(15):4118–4124

    Article  CAS  Google Scholar 

  35. Kim J, Oyola Y, Tsouris C, Hexel CR, Mayes RT, Janke CJ, Dai S (2013) Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind Eng Chem Res 52(27):9433–9440

    Article  CAS  Google Scholar 

  36. Liu X, Liu H, Ma H, Cao C, Yu M, Wang Z, Deng B, Wang M et al (2012) Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind Eng Chem Res 51(46):15089–15095

    Article  CAS  Google Scholar 

  37. Brown S, Yue Y, Kuo L-J, Mehio N, Li M, Gill G, Tsouris C, Mayes RT et al (2016) Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind Eng Chem Res 55(15):4139–4148

    Article  CAS  Google Scholar 

  38. Saito T, Brown S, Chatterjee S, Kim J, Tsouris C, Mayes RT, Kuo L-J, Gill G et al (2014) Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A 2(35):14674–14681

    Article  CAS  Google Scholar 

  39. Tsarevsky NV, Matyjaszewski K (2007) ”Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299

    Article  CAS  Google Scholar 

  40. Lee Sun H, Dreyer Daniel R, An J, Velamakanni A, Piner Richard D, Park S, Zhu Y, Kim Sang O et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31(3):281–288

    Article  Google Scholar 

  41. Matyjaszewski K, Xia J (2001) Atom Transfer Radical Polymerization. Chem Rev 101(9):2921–2990

    Article  CAS  Google Scholar 

  42. Song Y, Ye G, Lu Y, Chen J, Wang J, Matyjaszewski K (2016) Surface-initiated ARGET ATRP of poly(Glycidyl Methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions. ACS Macro Lett 5(3):382–386

    Article  CAS  Google Scholar 

  43. Lebed PJ, Savoie J-D, Florek J, Bilodeau F, Larivière D, Kleitz F (2012) Large pore mesostructured organosilica-phosphonate hybrids as highly efficient and regenerable sorbents for uranium sequestration. Chem Mater 24(21):4166–4176

    Article  CAS  Google Scholar 

  44. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446

    Article  CAS  Google Scholar 

  45. Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y et al (2017) Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl Mater Interfaces 9(38):32446–32451

    Article  CAS  Google Scholar 

  46. Xie S, Liu X, Zhang B, Ma H, Ling C, Yu M, Li L, Li J (2015) Electrospun nanofibrous adsorbents for uranium extraction from seawater. J Mater Chem A 3(6):2552–2558

    Article  CAS  Google Scholar 

  47. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J-I, Katakai A, Seko N, Sugo T (2000) Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat Phys Chem 59(4):405–411

    Article  CAS  Google Scholar 

  48. Das S, Oyola Y, Mayes RT, Janke CJ, Kuo LJ, Gill G, Wood JR, Dai S (2016) Extracting uranium from seawater: promising AF series adsorbents. Ind Eng Chem Res 55(15):4110–4117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant No. 21401152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangting Chi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, F., Zhang, S., Wen, J. et al. Functional polymer brushes for highly efficient extraction of uranium from seawater. J Mater Sci 54, 3572–3585 (2019). https://doi.org/10.1007/s10853-018-3040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3040-7

Keywords

Navigation