Skip to main content
Log in

Optimization of a new radiochemical method based on extraction chromatographic resins and plastic scintillation for measurement of 90Sr in nuclear waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A purification method is developed to determine 90Sr in radioactive waste. A separation based on Sr-resin® with a pretreatment using TRU-resin® provides satisfactory Sr recovery yields before the 90Sr measurement by liquid scintillation counting (LSC) regardless the analyzed samples with low or high activity level. The selectivity of the procedure is checked by measuring the 90Y ingrowth after different days of separation without waiting for secular equilibrium. In order to obtain a REACH compliant method without scintillation cocktails, a plastic scintillation resin selective for Sr is implemented on the basis of the developed protocol. The optimized method is applied successfully to representative nuclear waste including samples with high Pu content (effluents, concretes and sludges).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Atomic Energy Agency (2020) PRIS-Power Reactor Information System. https://pris.iaea.org/PRIS/home.aspx. Accessed 31 Oct 2023

  2. LNE-LNHB/CEA (2005) Nuclear data-90Sr. http://www.lnhb.fr/nuclides/Sr-90_tables.pdf. Accessed 31 Oct 2023

  3. Willard HH, Goodspeed EW (1936) Separation of strontium, barium, and lead from calcium and other metals-by precipitation as nitrates. Ind Eng Chem Anal Ed 8:414–418. https://doi.org/10.1021/ac50104a003

    Article  CAS  Google Scholar 

  4. Sunderman DN, Meinke WW (1957) Evaluation of radiochemical separation procedures. Anal Chem 29:1578–1589. https://doi.org/10.1021/ac60131a005

    Article  CAS  Google Scholar 

  5. Baudat E, Gautier C, Fichet P et al (2021) Optimization of Sr-90 precipitation in nitric acid using design of experiments for radioactive waste characterization method. J Radioanal Nucl Chem 328:637–650. https://doi.org/10.1007/s10967-021-07680-5

    Article  CAS  Google Scholar 

  6. Shao Y, Yang G, Tazoe H et al (2018) A review of measurement methodologies and their applications to environmental 90Sr. J Environ Radioact 192:321–333. https://doi.org/10.1016/j.jenvrad.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  7. Cobb J, Warwick P, Carpenter RC, Morrison RT (1994) Determination of strontium-90 in water and urine samples using ion chromatography. Analyst 119:1759–1764. https://doi.org/10.1039/AN9941901759

    Article  CAS  PubMed  Google Scholar 

  8. Petrow HG (1965) Rapid determination of strontium-90 in bone via solvent extraction of yttrium-90. Anal Chem 37:584–586. https://doi.org/10.1021/ac60223a037

    Article  CAS  PubMed  Google Scholar 

  9. Baratta EJ, Reavey TC (1969) Rapid determination of strontium-90 in tissue, food, biota, and other environmental media by tributyl phosphate. J Agric Food Chem 17:1337–1339. https://doi.org/10.1021/jf60166a012

    Article  CAS  Google Scholar 

  10. Suzuki Y, Ohara R, Matsunaga K (2017) Optimization of collision/reaction gases for determination of 90Sr in atmospheric particulate matter by inductively coupled plasma tandem mass spectrometry after direct introduction of air via a gas-exchange device. Spectrochim Acta Part B At Spectrosc 135:82–90. https://doi.org/10.1016/j.sab.2017.07.007

    Article  CAS  Google Scholar 

  11. Russell B, García-Miranda M, Ivanov P (2017) Development of an optimised method for analysis of 90Sr in decommissioning wastes by triple quadrupole inductively coupled plasma mass spectrometry. Appl Radiat Isot 126:35–39. https://doi.org/10.1016/j.apradiso.2017.01.025

    Article  CAS  PubMed  Google Scholar 

  12. Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63:522–525. https://doi.org/10.1021/ac00005a027

    Article  CAS  PubMed  Google Scholar 

  13. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336. https://doi.org/10.1080/07366299208918107

    Article  CAS  Google Scholar 

  14. Horwitz EP, Dietz ML, Chiarizia R (1992) The application of novel extraction chromatographic materials to the characterization of radioactive waste solutions. J Radioanal Nucl Chem 161:575–583. https://doi.org/10.1007/BF02040504

    Article  CAS  Google Scholar 

  15. AFNOR (2002) Standard NF M60-316-Nuclear energy-Nuclear fuel technology-Waste-Strontium 90 assay in liquid or solid waste after a preliminary chemical separation

  16. Eichrom Technologies, LLC (2014) Strontium-89/90 in water

  17. Zhou Z, Ren H, Zhou L, Wang P, Lou XM, Zou H, Cao YY (2023) Recent development on determination of low-level Sr-90 in environmental and biological samples: a review. Molecules 28:90–110. https://doi.org/10.3390/molecules28010090

    Article  CAS  Google Scholar 

  18. ECHA-REACH Substance Infocard-4-Nonylphenol, branched and linear, ethoxylated. https://echa.europa.eu/fr/substance-information/-/substanceinfo/100.239.148. Accessed 31 Oct 2023

  19. Vasile M, Loots H, Vercammen L et al (2022) A study for the selection of NPE-free cocktails for LSC routine measurements. J Radioanal Nucl Chem 331:1–9. https://doi.org/10.1007/s10967-022-08405-y

    Article  CAS  Google Scholar 

  20. Varlam C, Vagner I, Faurescu D (2019) Performance of nonylphenol-ethoxylates-free liquid scintillation cocktail for tritium determination in aqueous samples. J Radioanal Nucl Chem 322:585–595. https://doi.org/10.1007/s10967-022-08405-y

    Article  CAS  Google Scholar 

  21. Tarancón A, Alonso E, Garcı́a JF, Rauret G (2002) Comparative study of quenching correction procedures for 90Sr/90Y determination by Cerenkov, liquid scintillation and plastic scintillation techniques. Anal Chim Acta 471:135–143. https://doi.org/10.1016/S0003-2670(02)00710-9

    Article  Google Scholar 

  22. Tarancón A, Garcı́a JF, Rauret G (2004) Determination of beta emitters (90Sr, 14C and 3H) in routine measurements using plastic scintillation beads. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 516:602–609. https://doi.org/10.1016/j.nima.2003.08.172

    Article  CAS  Google Scholar 

  23. Bagán H, Tarancón A, Rauret G, García JF (2011) Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686:50–56. https://doi.org/10.1016/j.aca.2010.11.048

    Article  CAS  PubMed  Google Scholar 

  24. Sáez-Muñoz M, Bagán H, Tarancón A et al (2019) Rapid methods for radiostrontium determination in aerosol filters and vegetation in emergency situations using PS resin. J Radioanal Nucl Chem 322:1397–1408. https://doi.org/10.1007/s10967-019-06779-0

    Article  CAS  Google Scholar 

  25. Sáez-Muñoz M, Bagán H, Tarancón A et al (2018) Rapid method for radiostrontium determination in milk in emergency situations using PS resin. J Radioanal Nucl Chem 315:543–555. https://doi.org/10.1007/s10967-017-5682-3

    Article  CAS  Google Scholar 

  26. (2013) ISO 11352-Water quality-Estimation of measurement uncertainty based on validation and quality control data

  27. Gautier C, Laporte E, Lambrot G, Giuliani M, Colin C, Bubendorff J, Crozet M, Mougel C (2020) Accurate measurement of 55Fe in radioactive waste. J Radioanal Nucl Chem 326:591–601. https://doi.org/10.1007/s10967-020-07332-0

    Article  CAS  Google Scholar 

  28. Gautier C, Colin C, Garcia C (2016) A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste. J Radioanal Nucl Chem 308:261–270. https://doi.org/10.1007/s10967-015-4301-4

    Article  CAS  Google Scholar 

  29. Lehto J, Hou X (2011) Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley, Hoboken

    Google Scholar 

  30. Leskinen A, Dorval E, Baudat E, Gautier C, Stordal S, Salminen-Paatero S (2023) Intercomparison exercise on difficult to measure radionuclides in spent ion exchange resin. J Radioanal Nucl Chem 332:77–94. https://doi.org/10.1007/s10967-022-08687-2

    Article  CAS  Google Scholar 

  31. Fullam HT (1976) The solubility and dissolution behavior of 90SrF2 in aqueous media. BNWL-2101, Battelle, Pacific Northwest Laboratories

  32. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307. https://doi.org/10.1016/j.aca.2004.12.022

    Article  CAS  Google Scholar 

  33. Benjamin MM, Leckie JO (1981) Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J Colloid Interface Sci 79:209–221

    Article  CAS  Google Scholar 

  34. Grate JW, Egorov O, Fadeff SK (1999) Separation-optimized sequential injection method for rapid automated analytical separation of 90Sr in nuclear waste. Analyst 124:203–210. https://doi.org/10.1039/A807468B

    Article  CAS  Google Scholar 

  35. Tomita J, Takeuchi E (2019) Rapid analytical method of 90Sr in urine sample: Rapid separation of Sr by phosphate co-precipitation and extraction chromatography, followed by determination by triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). Appl Radiat Isot 150:103–109. https://doi.org/10.1016/j.apradiso.2019.05.026

    Article  CAS  PubMed  Google Scholar 

  36. Qiao J, Salminen-Paatero S, Rondahl SH et al (2017) Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples. J Radioanal Nucl Chem 314:813–826. https://doi.org/10.1007/s10967-017-5385-9

    Article  CAS  Google Scholar 

  37. Sahli H, Röllin S, Putyrskaya V et al (2017) A procedure for the sequential determination of radionuclides in soil and sediment samples. J Radioanal Nucl Chem 314:2209–2218. https://doi.org/10.1007/s10967-017-5621-3

    Article  CAS  Google Scholar 

  38. Grahek Ž, Rožmarić Mačefat M (2004) Isolation of iron and strontium from liquid samples and determination of 55Fe and 89, 90Sr in liquid radioactive waste. Anal Chim Acta 511:339–348

    Article  CAS  Google Scholar 

  39. Quidelleur S, Granet M, Laszak I et al (2009) One step U-Pu-Cs-Ln-steel separation using TRU preconditioned extraction resins from Eichrom for application on transmutation targets. J Radioanal Nucl Chem 280:507–517. https://doi.org/10.1007/s10967-009-7449-y

    Article  CAS  Google Scholar 

  40. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281:361–372. https://doi.org/10.1016/0003-2670(93)85194-O

    Article  CAS  Google Scholar 

  41. Marchesani G, Trotta G, De Felice P, Bortone N, Damiano R, Nicolini M, Accettulli R, Eugenio Chiaravalle AE, Iammarino M (2022) Fast and Sensitive Radiochemical Method for Sr-90 determination in food and feed by chromatographic extraction and liquid scintillation counting. Food Anal Methods 15:1521–1534

    Article  Google Scholar 

  42. Swearingen KJ, Wall NA (2019) Fast and accurate simultaneous quantification of strontium-90 and yttrium-90 using liquid scintillation counting in conjunction with the Bateman equation. J Radioanal Nucl Chem 320:71–78

    Article  CAS  Google Scholar 

  43. U.S. Environmental Protection Agency (2011) Rapid radiochemical method for total radiostrontium (Sr-90) in water for environmental remediation following homeland security events. EPA 402-R-10-001d. Accessed 31 Oct 2023

  44. Wei C, Garnick K, Scott T, Wetherby A (2019) Simple methods for calculating activity of a parent-progeny system. J Radioanal Nucl Chem 322:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gibson JAB (1980) Modern techniques for measuring the quench correction in a liquid scintillation counter. In: Peng CT, Horrocks DL, Alpen EL (eds) Liquid scintillation counting, recent applications and developments. Academic Press, New York, pp 153–172

    Google Scholar 

  46. LNE-LNHB/CEA (2012) Nuclear data-210Pb. http://www.lnhb.fr/nuclides/Pb-210_tables.pdf. Accessed 31 Oct 2023

Download references

Acknowledgements

The CEA LASE team thanks the LA2D/LABOS project for the funding provided. The authors would like to thank Kimberly Colas for her valuable proofreading and corrections in English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Gautier.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudat, E., Gautier, C., Bagán, H. et al. Optimization of a new radiochemical method based on extraction chromatographic resins and plastic scintillation for measurement of 90Sr in nuclear waste. J Radioanal Nucl Chem 333, 1911–1925 (2024). https://doi.org/10.1007/s10967-024-09396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09396-8

Keywords

Navigation