Skip to main content
Log in

Composite magnetic sorbents based on magnetic Fe3O4 coated by Zn and Al layered double hydroxide for U(VI) removal from aqueous media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Composite sorbents based on Fe3O4 and Zn-Al-LDH with different weight ratios of magnetic and sorbing phases were obtained by the precipitation method. The optimal weight ratio of Zn/Fe was 16, which resulted in a 62% increase in hydromechanical strength. The maximum sorption exchange capacity towards U(VI) was 268.65 ± 22.22 mg/g. The efficiency of U(VI) adsorption was not affected by the presence of Cl, SO42−, NO3 and Na+, Ca2+. The distribution coefficient in a groundwater model solution was Kd(U(VI) = 0.5–3 × 105 mL/g. The materials possess high exchange capacity and selectivity, which makes them suitable sorbents for U(VI) removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

AAS :

Atomic adsorption spectroscopy

BET :

Brunauer–Emmett–Teller method

BJH :

Barrett-Joyner-Halenda Model

DFT :

Density functional theory

DTA :

Differential thermal analysis

EDS :

Energy-dispersive spectroscopy

LDH :

Layered double hydroxide

LRW :

Liquid radioactive waste

SEM :

Scanning electron microscopy

TG :

Thermogravimetric analysis

VSM :

Vibrating sample magnetometer

XRD :

X-ray diffraction

XRF :

X-ray fluorescence spectrometry

References

  1. Mudd GM (2014) The future of Yellowcake: A global assessment of uranium resources and mining. Sci Total Environ 472:590–607. https://doi.org/10.1016/j.scitotenv.2013.11.070

    Article  CAS  PubMed  Google Scholar 

  2. Yuan J, Zhou Z, Ge Y, Guo J, Sun Z, Ke P, Xu L, Yang Z, Zhai W (2023) Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis. J Radioanal Nucl Chem 332:387–398. https://doi.org/10.1007/s10967-022-08734-y

    Article  CAS  Google Scholar 

  3. Jun BM, Lee HK, Park S, Kim TJ (2022) Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675

    Article  CAS  Google Scholar 

  4. Mei D, Liu L, Yan B (2023) Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord Chem Rev 475:214917. https://doi.org/10.1016/j.ccr.2022.214917

    Article  CAS  Google Scholar 

  5. Akash S, Sivaprakash B, Raja VCV, Rajamohan N, Muthusamy G (2022) Remediation techniques for uranium removal from polluted environment—Review on methods, mechanism and toxicology. Environmental Pollution 302:119068. https://doi.org/10.1016/j.envpol.2022.119068

    Article  CAS  PubMed  Google Scholar 

  6. Huang M, Xie L, Wang Y, He H, Yu H, Cui J, Feng X, Lou Z, Xiong Y (2023) Efficient uranium electrochemical deposition with a functional phytic Acid-Doped Polyaniline/Graphite sheet electrode by Adsorption-electrodeposition strategy. Chemical Engineering Journal 457:141221. https://doi.org/10.1016/j.cej.2022.141221

    Article  CAS  Google Scholar 

  7. Chu J, Huang Q, Dong Y, Yao Z, Wang J, Qin Z, Ning Z, Xie J, Tian W, Yao H, Bai J (2022) Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane. Chemical Engineering Journal 444:136602. https://doi.org/10.1016/j.cej.2022.136602

    Article  CAS  Google Scholar 

  8. Liu N, Li R, Zhu J, Liu Q, Chen R, Yu J, Li Y, Zhang H, Wang J (2023) Z-scheme heterojunction ZnS/WO3 composite: Photocatalytic reduction of uranium and band gap regulation mechanism. J Colloid Interface Sci 630:727–737. https://doi.org/10.1016/j.jcis.2022.10.151

    Article  CAS  PubMed  Google Scholar 

  9. Bayramoglu G, Yakup Arica M (2016) Amidoxime functionalized Trametes trogii pellets for removal of uranium(VI) from aqueous medium. J Radioanal Nucl Chem 307:373–384. https://doi.org/10.1007/s10967-015-4224-0

    Article  CAS  Google Scholar 

  10. Yu Q, Yuan Y, Feng L, Sun W, Lin K, Zhang J, Zhang Y, Wang H, Wang N, Peng Q (2022) Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. J Hazard Mater 424:127758. https://doi.org/10.1016/j.jhazmat.2021.127758

    Article  CAS  PubMed  Google Scholar 

  11. Jiang TJ, Zhang XW, Xie C, Wu XY, Luo CW, Li M, Peng Y (2021) Effective capture of aqueous uranium using a novel magnetic goethite: Properties and mechanism. J Solid State Chem 300:122236. https://doi.org/10.1016/j.jssc.2021.122236

    Article  CAS  Google Scholar 

  12. Singhal P, Vats BG, Yadav A, Pulhani V (2020) Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: Understanding adsorption and binding mechanisms. J Hazard Mater 384:121353. https://doi.org/10.1016/j.jhazmat.2019.121353

    Article  CAS  PubMed  Google Scholar 

  13. Li N, Gao P, Chen H, Li F, Wang Z (2022) Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater. Chemosphere 287:132137. https://doi.org/10.1016/j.chemosphere.2021.132137

    Article  CAS  PubMed  Google Scholar 

  14. Ou T, Peng H, Su M, Shi Q, Tang J, Chen N, Chen D (2021) Fast and efficient removal of uranium onto a magnetic hydroxyapatite composite: Mechanism and process evaluation. Processes 9:1927. https://doi.org/10.3390/pr9111927

    Article  CAS  Google Scholar 

  15. Zhao Y, Li J, Zhang S, Wang X (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(vi). RSC Adv 4:32710–32717. https://doi.org/10.1039/c4ra05128a

    Article  CAS  Google Scholar 

  16. Papynov EK, Nomerovskii AD, Azon AS, Glavinskaya VO, Buravlev IY, Ognev AV, Samardak AS, Dran’kov AN, Krasitskaya SG, Tananaev IG (2020) Macroporous Magnetic Iron Oxides and Their Composites for Liquid-Phase Catalytic Oxidation. Russ J Inorg Chem 65:1642–1653. https://doi.org/10.1134/S0036023620110157

    Article  Google Scholar 

  17. Papynov EK, Dran’kov AN, Tkachenko IA, Buravlev IY, Mayorov VY, Merkulov EB, Fedorets AN, Ognev AV, Samardak AS, Drenin AS, Tananaev IG (2020) Synthesis and Sorption Characteristics of Magnetic Materials Based on Cobalt Oxides and Their Reduced Forms. Russ J Inorg Chem 65:820–828. https://doi.org/10.1134/S0036023620060157

    Article  CAS  Google Scholar 

  18. Zhao D, Wang Y, Zhao S, Wakeel M, Wang Z, Shaikh RS, Hayat T, Chen C (2019) A simple method for preparing ultra-light graphene aerogel for rapid removal of U(VI) from aqueous solution. Environ Pollut 251:547–554. https://doi.org/10.1016/j.envpol.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Zhao D, Ding Y, Chen Y, Li F, Alsaedi A, Hayat T, Chen C (2019) Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution. J Clean Prod 230:1305–1315. https://doi.org/10.1016/j.jclepro.2019.05.193

    Article  CAS  Google Scholar 

  20. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312:293–303. https://doi.org/10.1007/s10967-017-5216-z

    Article  CAS  Google Scholar 

  21. Wang Q, Huang J, Ma C, Hu H, Shen C, He S, Li P (2023) Highly efficient and reusable Mg–Fe layered double hydroxides anchored in attapulgite for uranium uptake from wastewater. Chemosphere 321:138055. https://doi.org/10.1016/j.chemosphere.2023.138055

    Article  CAS  PubMed  Google Scholar 

  22. Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X, Kanatzidis MG (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137:3670–3677. https://doi.org/10.1021/jacs.5b00762

    Article  CAS  PubMed  Google Scholar 

  23. Jana A, Unni A, Ravuru SS, Das A, Das D, Biswas S, Sheshadri H, De S (2022) In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor. Chem Eng J 428:131180. https://doi.org/10.1016/j.cej.2021.131180

    Article  CAS  Google Scholar 

  24. Muhire C, Zhang D, Xu X (2022) Adsorption of uranium (VI) ions by LDH intercalated with L-methionine in acidic water: Kinetics, thermodynamics and mechanisms. Results Eng 16:100686. https://doi.org/10.1016/j.rineng.2022.100686

    Article  CAS  Google Scholar 

  25. Balybina VA, Dran’kov AN, Shichalin OO, Savel’eva NY, Kokorina NG, Kuular ZC, Ivanov NP, Krasitskaya SG, Ivanets AI, Papynov EK (2023) Mesoporous layered double hydroxides: Synthesis for high effective uranium ions sorption from seawater and salt solutions on nanocomposite functional materials. J Compos Sci 7:458. https://doi.org/10.3390/jcs7110458

    Article  CAS  Google Scholar 

  26. Ivanov NP, Dran’kov AN, Papynov EK, Lembikov AO, Mayorov VY, Fedorets AN, Kaspruk GD (2023) Layered double zinc and aluminum hydroxide intercalated with hexacyanoferrate(II) ions for extraction of U(VI) from liquid media. Prot Met Phys Chem Surf 59:868–875. https://doi.org/10.1134/S2070205123701058

    Article  CAS  Google Scholar 

  27. Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. J Sep Sci 37:1805–1825. https://doi.org/10.1002/jssc.201400256

    Article  CAS  PubMed  Google Scholar 

  28. Hamza MF, Guibal E, Wei Y, Fouda A (2023) Magnetic amino-sulfonic dual sorbent for uranyl sorption from aqueous solutions—Influence of light irradiation on sorption properties. Chem Eng J 456:141099. https://doi.org/10.1016/j.cej.2022.141099

    Article  CAS  Google Scholar 

  29. Al-Ghamdi AA, Galhoum AA, Alshahrie A, Al-Turki YA, Al-Amri AM, Wageh S (2022) Mesoporous Magnetic Cysteine Functionalized Chitosan Nanocomposite for Selective Uranyl Ions Sorption: Experimental, Structural Characterization, and Mechanistic Studies. Polymers (Basel) 14:2568. https://doi.org/10.3390/polym14132568

    Article  CAS  PubMed  Google Scholar 

  30. Ramkumar J, Majeed J, Chandramouleeswaran S (2021) Insight to sorption mechanism employing nanocomposite: Case study of toxic species removal. Microporous and Mesoporous Materials 314:110858. https://doi.org/10.1016/j.micromeso.2020.110858

    Article  CAS  Google Scholar 

  31. Galhoum AA, Eisa WH, El-Tantawy El-Sayed I, Tolba AA, Shalaby ZM, Mohamady SI, Muhammad SS, Hussien SS, Akashi T, Guibal E (2020) A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite—Application to uranium sorption from ore leachate. Environmental Pollution 264:114797. https://doi.org/10.1016/j.envpol.2020.114797

    Article  CAS  PubMed  Google Scholar 

  32. Alaqarbeh M, Khalili FI, Kanoun O (2020) Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV). J Radioanal Nucl Chem 323:515–537. https://doi.org/10.1007/s10967-019-06953-4

    Article  CAS  Google Scholar 

  33. Saleh TA, Naeemullah M, Tuzen A (2017) Sarı, polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227. https://doi.org/10.1016/j.cherd.2016.10.030

    Article  CAS  Google Scholar 

  34. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216. https://doi.org/10.1016/j.jhazmat.2012.02.054

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Li M, Tang Y, Wen X (2023) A novel Fe3O4/MgAl-LDH hollow microspheres for effective removal of dyes from wastewater. J Alloys Compd 959:170528. https://doi.org/10.1016/j.jallcom.2023.170528

    Article  CAS  Google Scholar 

  36. Qiao W, Bai H, Tang T, Miao J, Yang Q (2019) Recovery and utilization of phosphorus in wastewater by magnetic Fe3O4/Zn-Al-Fe-La layered double hydroxides(LDHs). Colloids Surf A Physicochem Eng Asp 577:118–128. https://doi.org/10.1016/j.colsurfa.2019.05.046

    Article  CAS  Google Scholar 

  37. Rajabi M, Abolhosseini M, Hosseini-Bandegharaei A, Hemmati M, Ghassab N (2020) Magnetic dispersive micro-solid phase extraction merged with micro-sampling flame atomic absorption spectrometry using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 nanosorbent for effective trace determination of nickel(II) and cadmium(II) in food samples. Microchemical Journal. 159:105450. https://doi.org/10.1016/j.microc.2020.105450

    Article  CAS  Google Scholar 

  38. Santosa SJ, Krisbiantoro PA, Minh Ha TT, Thanh Phuong NT, Gusrizal G (2021) Composite of magnetite and Zn/Al layered double hydroxide as a magnetically separable adsorbent for effective removal of humic acid. Colloids Surf A Physicochem Eng Asp 614:126159. https://doi.org/10.1016/j.colsurfa.2021.126159

    Article  CAS  Google Scholar 

  39. Biata NR, Jakavula S, Mashile GP, Nqombolo A, Moutloali RM, Nomngongo PN (2020) Recovery of gold(III) and iridium(IV) using magnetic layered double hydroxide (Fe3O4/Mg-Al-LDH) nanocomposite: Equilibrium studies and application to real samples. Hydrometallurgy 197:105447. https://doi.org/10.1016/j.hydromet.2020.105447

    Article  CAS  Google Scholar 

  40. Lu ZH, Abdelhai Senosy I, Zhou DD, Yang ZH, Guo HM, Liu X (2021) Synthesis and adsorption properties investigation of Fe3O4@ZnAl-LDH@MIL-53(Al) for azole fungicides removal from environmental water. Sep Purif Technol 276:119282. https://doi.org/10.1016/j.seppur.2021.119282

    Article  CAS  Google Scholar 

  41. Jung IK, Jo Y, Han SC, Il Yun J (2020) Efficient removal of iodide anion from aqueous solution with recyclable core-shell magnetic Fe3O4@Mg/Al layered double hydroxide (LDH). Science of the Total Environment 705:135814. https://doi.org/10.1016/j.scitotenv.2019.135814

    Article  CAS  PubMed  Google Scholar 

  42. Nie S, Wu J, Wang L, Cheng F, Sun Z, Chen X, Liu H, Wen S, Gong C (2023) Hierarchical Fe3O4@LDH-incorporated composite anion exchange membranes for fuel cells based on magnetic field orientation. Surfaces and Interfaces 37:102640. https://doi.org/10.1016/j.surfin.2023.102640

    Article  CAS  Google Scholar 

  43. Tokar E, Maslov K, Tananaev I, Egorin A (2021) Recovery of uranium by se-derivatives of amidoximes and composites based on them. Materials 14:5511. https://doi.org/10.3390/ma14195511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Egorin AM, Dran’kov AN, Didenko NV, Tokar’ EA, Sokol’nitskaya TA, Papynov EK, Tananaev IG (2020) Synthesis and sorption characteristics of tungsten oxides-based materials for Sr-90 removal from water media. J Mater Sci 55:9374–9384. https://doi.org/10.1007/s10853-020-04683-7

    Article  CAS  Google Scholar 

  45. Bouali AC, Iuzviuk MH, Serdechnova M, Yasakau KA, Wieland DCF, Dovzhenko G, Maltanava H, Zobkalo IA, Ferreira MGS, Zheludkevich ML (2020) Zn-Al LDH growth on AA2024 and zinc and their intercalation with chloride: Comparison of crystal structure and kinetics. Appl Surf Sci 501:144027. https://doi.org/10.1016/j.apsusc.2019.144027

    Article  CAS  Google Scholar 

  46. Nakate UT, Yu Y-T, Park S (2022) Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceram Inter 48:28822–28829

    Article  CAS  Google Scholar 

  47. Nagaraju YS, Ganesh H, Veeresha S, Vijeth H, Devendrappa H (2022) Synthesis of hierarchical ZnO/NiO nanocomposite Wurtz hexagonal nanorods via hydrothermal for high-performance symmetric supercapacitor application. J Energy Storage 56:105924. https://doi.org/10.1016/j.est.2022.105924

    Article  Google Scholar 

  48. Sydorchuk V, Levytska S, Biedrzycka A, Khalameida S, Skwarek E (2023) Effect of hydrothermal and mechanochemical treatments on the physicochemical and photocatalytic properties of Zn–Al double hydroxide and compositions based on it. Adsorption. https://doi.org/10.1007/s10450-023-00402-1

    Article  Google Scholar 

  49. Tajat N, El Hayaoui W, Bougdour N, Idlahcen A, Radaa C, Bakas I, Tamimi M, Cherkaoui O, Badreddine M, Assabbane A, Qourzal S (2022) Utilization of Zn–Al–Cl layered double hydroxide as an adsorbent for the removal of anionic dye Remazol Red 23 in aqueous solutions: kinetic, equilibrium, and thermodynamic studies, Nanotechnology for. Environ Eng 7:343–357. https://doi.org/10.1007/s41204-022-00237-1

    Article  CAS  Google Scholar 

  50. Lin Z, Chen L, Ye Z, Chen X, Wang X, Wei Y (2021) Film-like chitin/polyethylenimine biosorbent for highly efficient removal of uranyl-carbonate compounds from water. J Environ Chem Eng 9:105340. https://doi.org/10.1016/j.jece.2021.105340

    Article  CAS  Google Scholar 

  51. Das A, Jana A, Das D, Biswas S, Sheshadri H, Rao MS, De S (2023) Surfactant assisted APTES functionalization of graphene oxide intercalated layered double hydroxide (LDH) for uranium adsorption from alkaline leach liquor. J Clean Prod 390:136058. https://doi.org/10.1016/j.jclepro.2023.136058

    Article  CAS  Google Scholar 

  52. Yang D, Wang X, Wang N, Zhao G, Song G, Chen D, Liang Y, Wen T, Wang H, Hayat T, Alsaedi A, Wang X, Wang S (2018) In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficient removal and recovery of U(VI). J Clean Prod 172:2033–2044. https://doi.org/10.1016/j.jclepro.2017.11.219

    Article  CAS  Google Scholar 

  53. Wang X, Yu S, Wu Y, Pang H, Yu S, Chen Z, Hou J, Alsaedi A, Hayat T, Wang S (2018) The synergistic elimination of uranium (VI) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide. Chem Eng J 342:321–330. https://doi.org/10.1016/j.cej.2018.02.102

    Article  CAS  Google Scholar 

  54. Hamza MF, Wei Y, Benettayeb A, Wang X, Guibal E (2020) Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J Mater Sci 55:4193–4212. https://doi.org/10.1007/s10853-019-04235-8

    Article  CAS  Google Scholar 

  55. Liu W, Huang Y, Huang G, Fan L, Xie Y, Zhang Q, Shi J (2023) Convenient sorption of uranium by Amidoxime-functionalized mesoporous silica with magnetic core from aqueous solution. J Mol Liq 375:121214. https://doi.org/10.1016/j.molliq.2023.121214

    Article  CAS  Google Scholar 

  56. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI)ions from solution. Chem Eng Res Des 147:146–159. https://doi.org/10.1016/j.cherd.2019.04.039

    Article  CAS  Google Scholar 

  57. Wang Z, Zhao D, Wu C, Chen S, Wang Y, Chen C (2020) Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl Radiat and Isot 162:109160. https://doi.org/10.1016/j.apradiso.2020.109160

    Article  CAS  Google Scholar 

  58. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310:711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  59. Wang L, Zhao D, Ding D, Wu C, Chen Y (2023) Highly improved removal of U(VI) from water by Fe-Cu nanoparticles anchored on corn straw biochar: Influencing factors and mechanism studies. Inorg Chem Commun 153:110771. https://doi.org/10.1016/j.inoche.2023.110771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation, topic No. FZNS-2023-0003. Equipment of interdisciplinary CUC in the field of nanotechnologies and new functional materials (FEFU, Vladivostok, Russia) used in the research is gratefully acknowledged.

Funding

State Assignment of the Ministry of Science and Higher Education of the Russian Federation, No. FZNS-2023-0003, Evgeniy Konstantinovich Papynov

Author information

Authors and Affiliations

Authors

Contributions

Ivanov N.P.: Conceptualization, Methodology, Investigation, Formal analysis, Writing—original draft. Dran’kov A.N.: Methodology, Conceptualization, Data curation, Supervision. Shichalin O.O.: Methodology, Supervision, Writing—editing. Lembikov O.O.: Investigation, Formal analysis, Software. Buravlev I.Yu. Methodology, Visualization, Software, Writing—editing. Mayorov V.Yu.: Investigation, Formal analysis, Software. Balanov M.I.: Investigation, Formal analysis, Software. Rogachev K.A.: Investigation, Formal analysis. Kaspruk G.D.: Investigation, Formal analysis. Pisarev S.M.: Investigation, Formal analysis, Validation. Marmaza P.A.: Investigation, Formal analysis, Validation. Rastorguev V.L.: Investigation, Formal analysis, Validation. Balybina V.A.: Investigation, Formal analysis, Validation. Fedorets A.N.: Investigation, Formal analysis, Visualization, Software. Kaptkaov V.O.: Writing—editing. Papynov E.K.: Project administration, Supervision, Funding Acquisition, Resources

Corresponding author

Correspondence to N. P. Ivanov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.P., Dran’kov, A.N., Shichalin, O.O. et al. Composite magnetic sorbents based on magnetic Fe3O4 coated by Zn and Al layered double hydroxide for U(VI) removal from aqueous media. J Radioanal Nucl Chem 333, 1213–1230 (2024). https://doi.org/10.1007/s10967-024-09362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09362-4

Keywords

Navigation