Skip to main content
Log in

Effect of hydrothermal and mechanochemical treatments on the physicochemical and photocatalytic properties of Zn–Al double hydroxide and compositions based on it

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Zn–Al layered double hydroxide (LDH) with Zn/Al ratio 3 has been synthesized by co-precipitation. This LDH has been modified via hydrothermal (HTT) and mechanochemical treatments as well as next calcination at 500 ºC. All obtained LDH samples have been studied using XRD, nitrogen adsorption–desorption, UV–Vis and FTIR spectroscopy, potentiometric titration. HTT of LDH in the form of wet gel at 150 ºC promotes improving the crystal structure of hydrotalcite and formation of meso-macroporous structure. Destruction of hydrotalcite structure and formation of ZnO in its matrix occurs at higher temperature. Calcined samples are oxide compositions with crystalline ZnO. HTT leads to increase in adsorption ability respect to safranin T and its photocatalytic degradation under visible irradiation. Calcined oxide compositions have maximal photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable for that section.

References

  1. Cavani, F., Trifirò, F., Vaccari, A.: Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991). https://doi.org/10.1016/0920-5861(91)80068-k

    Article  CAS  Google Scholar 

  2. Mohapatra, L., Parida, K.: A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mate. Chem. A. 4, 10744–10766 (2016). https://doi.org/10.1039/c6ta01668e

    Article  CAS  Google Scholar 

  3. Patzkó, Á., Kun, R., Hornok, V., Dékány, I., Engelhardt, T., Schall, N.: ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution. Colloids Surf. A 265, 64–72 (2005). https://doi.org/10.1016/j.colsurfa.2005.01.039

    Article  CAS  Google Scholar 

  4. Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamou, A., Barriga, C.: A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Appl. Clay Sci. 143, 142–150 (2017). https://doi.org/10.1016/j.clay.2017.03.019

    Article  CAS  Google Scholar 

  5. Dos Santos, R.M.M., Gonçalves, R.G.L., Constantino, V.R.L., Santilli, C.V., Borges, P.D., Tronto, J., Pinto, F.G.: Adsorption of acid yellow 42 dye on calcined layered double hydroxide: effect of time, concentration, pH and temperature. Appl. Clay Sci. 140, 132–139 (2017). https://doi.org/10.1016/j.clay.2017.02.005

    Article  CAS  Google Scholar 

  6. Morimoto, K., Tamura, K., Iyi, N., Ye, J., Yamada, H.: Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. J. Phys. Chem. Solids 72, 1037–1045 (2011). https://doi.org/10.1016/j.jpcs.2011.05.018

    Article  ADS  CAS  Google Scholar 

  7. Starukh, H., Levytska, S.: The simultaneous anionic and cationic dyes removal with Zn Al layered double hydroxides. Appl. Clay Sci. 180, 105183 (2019). https://doi.org/10.1016/j.clay.2019.105183

    Article  CAS  Google Scholar 

  8. Mandal, S., Natarajan, S.: Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3-xO4 mixed oxides. J. Environ. Chem. Eng. 3, 1183–1193 (2015). https://doi.org/10.1016/j.jece.2015.04.021

    Article  CAS  Google Scholar 

  9. Seftel, E.M., Popovici, E., Mertens, M., Witte, K.D., Tendeloo, G.V., Cool, P., Vansant, E.F.: Zn–Al layered double hydroxides: synthesis, characterization and photocatalytic application. Micropor. Mesopor. Mater. 113, 296–304 (2008). https://doi.org/10.1016/j.micromeso.2007.11.029

    Article  CAS  Google Scholar 

  10. Starukh, G.: Photocatalytically enhanced cationic dye removal with Zn-Al layered double hydroxides. Nanoscale Res. Lett. 12, 391 (2017). https://doi.org/10.1186/s11671-017-2173-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia, S.-J., Liu, F.-X., Ni, Z.-M., Xue, J.-L., Qian, P.-P.: Layered double hydroxides as efficient photocatalysts for visible-light degradation of Rhodamine B. J. Colloid Interface Sci. 405, 195–200 (2013). https://doi.org/10.1016/j.jcis.2013.05.064

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Leboda, R., Charmas, B., Sidorchuk, V.: Physicochemical and technological aspects of the hydrothermal modifcation of complex sorbents and catalysts. Part 1. Modifcation of porous and crystalline structures. Adsorp. Sci. Technol. 15, 189–214 (1997). https://doi.org/10.1177/026361749701500305

    Article  CAS  Google Scholar 

  13. Szczęśniak, B., Choma, J., Jaroniec, M.: Recent advances in mechanochemical synthesis of mesoporous metal oxides. Mater. Adv. 2, 2510–2523 (2021). https://doi.org/10.1039/d1ma00073j

    Article  CAS  Google Scholar 

  14. Qu, J., Zhang, Q., Li, X., He, X., Song, S.: Mechanochemical approaches to synthesize layered double hydroxides: a review. Appl. Clay Sci. 119, 185–192 (2016). https://doi.org/10.1016/j.clay.2015.10.018

    Article  CAS  Google Scholar 

  15. Qu, J., He, X., Li, X., Ai, Z., Li, Y., Zhang, Q., Liu, X.: Precursor preparation of Zn–Al layered double hydroxide by ball milling for enhancing adsorption and photocatalytic decoloration of methyl orange. RSC Adv. 7, 31466–31474 (2017). https://doi.org/10.1039/c7ra05316a

    Article  ADS  CAS  Google Scholar 

  16. Yang, Z., Wang, F., Zhang, C., Zeng, G., Tan, X., Yu, Z., Cui, F.: Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: a review. RSC Adv. 6, 79415–79436 (2016). https://doi.org/10.1039/c6ra12727d

    Article  ADS  CAS  Google Scholar 

  17. Indris, S., Amade, R., Heitjans, P., Finger, M., Haeger, A., Hesse, D., Grünert, W., Börger, A., Becker, K.D.: Preparation by high-energy milling, characterization, and catalytic properties of nanocrystalline TiO2. J. Phys. Chem. B. 109, 23274–23278 (2005). https://doi.org/10.1021/jp054586t

    Article  CAS  PubMed  Google Scholar 

  18. Khalameida, S., Sydorchuk, V., Leboda, R., Skubiszewska-Zięba, J., Zazhigalov, V.: Prepared of nanodispersed lithium niobate by mechanochemical route. J. Therm. Anal. Calorim. 115, 579–586 (2014). https://doi.org/10.1007/s10973-013-3343-5

    Article  CAS  Google Scholar 

  19. Kucio, K., Charmas, B., Sydorchuk, V., Khalameida, S., Khyzhun, O.: Synthesis and modification of Ce-Zr oxide compositions as photocatalysts. Appl. Catal. A. 603, 117767 (2020). https://doi.org/10.1016/j.apcata.2020.117767

    Article  CAS  Google Scholar 

  20. Kucio, K., Sydorchuk, V., Khalameida, S., Charmas, B.: The effect of mechanochemical, microwave and hydrothermal modification of precipitated TiO2 on its physical-chemical and photocatalytic properties. J. Alloys Comp. 862, 158011 (2021). https://doi.org/10.1016/j.jallcom.2020.158011

    Article  CAS  Google Scholar 

  21. Kucio, K., Sydorchuk, V., Khalameida, S., Charmas, B.: Mechanochemical and microwave treatment of precipitated zirconium dioxide and study of its physical–chemical, thermal and photocatalytic properties. J. Therm. Anal. Calorim. 147, 253–262 (2022). https://doi.org/10.1007/s10973-020-10285-x

    Article  CAS  Google Scholar 

  22. Shifu, C., Lei, C., Shen, G., Gengyu, C.: The preparation of coupled SnO2/TiO2 photocatalyst by ball milling. Mater. Chem. Phys. 98, 116–120 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.073

    Article  CAS  Google Scholar 

  23. Hongo, T., Yoshino, S., Yamazaki, A., Yamasaki, A., Satokawa, S.: Mechanochemical treatment of vermiculite in vibration milling and its effect on lead (II) adsorption ability. Appl. Clay Sci. 70, 74–78 (2012). https://doi.org/10.1016/j.clay.2012.09.016

    Article  CAS  Google Scholar 

  24. Sydorchuk, V., Vasylechko, V., Khyzhun, O., Gryshchouk, G., Khalameida, S., Vasylechko, L.: Effect of high-energy milling on the structure, some physicochemical and photocatalytic properties of clinoptilolite. Appl. Catal. A. 610, 117930 (2021). https://doi.org/10.1016/j.apcata.2020.117930

    Article  CAS  Google Scholar 

  25. Granda-Ramírez, C.F., Hincapié-Mejía, G.M., Serna-Galvis, E.A., Torres-Palma, R.A.: Degradation of recalcitrant safranin T through an electrochemical process and three photochemical advanced oxidation technologies. Water Air Soil Pollut. 228, 425 (2017). https://doi.org/10.1007/s11270-017-3611-2

    Article  ADS  CAS  Google Scholar 

  26. Gupta, V.K., Jain, R., Mittal, A., Mathur, M., Sikarwar, S.: Photochemical degradation of the hazardous dye safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 309, 464–469 (2008). https://doi.org/10.1016/j.jcis.2006.12.010

    Article  ADS  CAS  Google Scholar 

  27. Pinto da Costa, J., Girão, A.V., Monteiro, O.C., Trindade, T., Costa, M.C.: Biotechnologically obtained nanocomposites: a practical application for photodegradation of safranin-T under UV-Vis and solar light. J. Environ. Sci. Health Part A 50, 996–1010 (2015). https://doi.org/10.1080/10934529.2015.1038155

    Article  CAS  Google Scholar 

  28. Bouraada, M., Lafjah, M., Ouali, M., Demenorval, L.: Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite. J. Hazard. Mater. 153, 911–918 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.076

    Article  CAS  PubMed  Google Scholar 

  29. Takeda, N., Torimoto, T., Sampath, S., Kuwabata, S., Yoneyama, H.: Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys. Chem. 99, 9986–9991 (1995). https://doi.org/10.1021/j100024a047

    Article  CAS  Google Scholar 

  30. Sharma, S.K., Kushwaha, P.K., Srivastava, V.K., Bhatt, S.D., Jasra, R.V.: Effect of Hydrothermal conditions on structural and textural properties of synthetic hydrotalcites of varying Mg/Al Ratio. Ind. Eng. Chem. Res. 46, 4856–4865 (2007). https://doi.org/10.1021/ie061438w

    Article  CAS  Google Scholar 

  31. Wijitwongwan, R.P., Intasa-ard, S.G., Ogawa, M.: Preparation of layered double hydroxides toward precisely designed hierarchical organization. ChemEngineering 3, 68 (2019). https://doi.org/10.3390/chemengineering3030068

    Article  CAS  Google Scholar 

  32. Khusnutdinov, V.P., Isupov, V.P.: Mechanochemical synthesis of a hydroxycarbonate form of layered magnesium aluminum hydroxides. Inorg. Mater. 44, 263–267 (2008). https://doi.org/10.1134/s0020168508030096

    Article  CAS  Google Scholar 

  33. Zeng, X., Yang, Z., Liu, F., Long, J., Feng, Z., Fan, M.: An in situ recovery method to prepare carbon-coated Zn–Al–hydrotalcite as the anode material for nickel–zinc secondary batteries. RSC Adv. 7, 44514–44522 (2017). https://doi.org/10.1039/c7ra08622a

    Article  ADS  CAS  Google Scholar 

  34. Janusz, W., Skwarek, E.: Adsorption of Ca(II) and Fe(III) ions at the SnO2/electrolyte solution interface. Physicochem. Probl. Miner. Process. 46, 73–82 (2011)

    CAS  Google Scholar 

  35. Khalameida, S., Samsonenko, M., Sydorchuk, V., Zakytevskyy, O., Starchevskyy, V., Lakhnik, A.: Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T. Reac. Kinet. Mech. Catal. 135, 1665–1685 (2022). https://doi.org/10.1007/s11144-022-02206-w

    Article  CAS  Google Scholar 

  36. Rauf, M.A., Ashraf, S.S.: Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009). https://doi.org/10.1016/j.cej.2009.02.026

    Article  CAS  Google Scholar 

  37. Balayeva, O.O.: Synthesis and characterization of zinc-aluminum based layered double hydroxide and oxide nanomaterials by performing different experimental parameters. J. Dispers. Sci. Technol. 43, 1187–1196 (2021). https://doi.org/10.1080/01932691.2020.1848580

    Article  CAS  Google Scholar 

  38. Długosz, O., Banach, M.: Ecological synthesis of nickel–zinc–aluminium layered double hydroxides (Ni–Zn–Al LDH) in flow infrared radiated agitated tubular reactor (flow-IR-ATR). J Nanopart Res 24, 250 (2022). https://doi.org/10.1007/s11051-022-05629-7

    Article  CAS  Google Scholar 

  39. Ahmed, A.A.A., Talib, Z.A., Hussein, M.Z.B., Zakaria, A.: Zn–Al layered double hydroxide prepared at different molar ratios: preparation, characterization, optical and dielectric properties. J. Solid State Chem. 191, 271–278 (2012). https://doi.org/10.1016/j.jssc.2012.03.013

    Article  ADS  CAS  Google Scholar 

  40. Smoláková, L., Dubnová, L., Kocík, J., Endres, J., Daniš, S., Priecel, P., Čapek, L.: In-situ characterization of the thermal treatment of Zn-Al hydrotalcites with respect to the formation of Zn/Al mixed oxide active in aldol condensation of furfural. Appl. Clay Sci. 157, 8–18 (2018). https://doi.org/10.1016/j.clay.2018.02.024

    Article  CAS  Google Scholar 

  41. Demoisson, F., Piolet, R., Bernard, F.: Hydrothermal synthesis of ZnO crystals from Zn(OH)2 metastable phases at room to supercritical conditions. Cryst. Growth Des. 14, 5388–5396 (2014). https://doi.org/10.1021/cg500407r

    Article  CAS  Google Scholar 

  42. Occelli, M.L., Olivier, J.P., Auroux, A., Kalwei, M., Eckert, H.: Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chem. Mater. 15, 4231–4238 (2003). https://doi.org/10.1021/cm030105b

    Article  CAS  Google Scholar 

  43. Gheorghiu, S., Coppens, M.O.: Optimal bimodal pore networks for heterogeneous catalysis. AIChE J. 50, 812–820 (2004). https://doi.org/10.1002/aic.10076

    Article  ADS  CAS  Google Scholar 

  44. Perego, C., Millini, R.: Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013). https://doi.org/10.1039/C2CS35244C

    Article  CAS  PubMed  Google Scholar 

  45. Dubnová, L., Smoláková, L., Kikhtyanin, O., Kocík, J., Kubička, D., Zvolská, M., Pouzar, M., Čapek, L.: The role of ZnO in the catalytic behaviour of Zn-Al mixed oxides in aldol condensation of furfural with acetone. Catal. Today 379, 181–191 (2021). https://doi.org/10.1016/j.cattod.2020.09.011

    Article  CAS  Google Scholar 

  46. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  ADS  CAS  Google Scholar 

  47. Rouahna, N., Ouakouak, A., Barkat, D., Srasra, E.: Zn-Al layered double hydroxide: synthesis, characterization and application for orthophosphates ions adsorption in aqueous medium. Mater. Res. Express. 7, 045502 (2020). https://doi.org/10.1088/2053-1591/ab73fe

    Article  ADS  CAS  Google Scholar 

  48. Kosmulski, M.: The pH-dependent surface charging and points of zero charge. J. Colloid Interface Sci. 353, 1–15 (2011). https://doi.org/10.1016/j.jcis.2010.08.023

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Kosmulski, M.: Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 238, 1–61 (2016). https://doi.org/10.1016/j.cis.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  50. Khalameida, S., Samsonenko, M., Khyzhun, O., Sydorchuk, V., Starchevskyy, V., Charmas, B., Skwarek, E.: Sono- and mechanochemical doping of tin dioxide with silver and its physicochemical characteristics and photocatalytic properties. Res. Chem. Intermed. (2023). https://doi.org/10.1007/s11164-022-04865-9

    Article  Google Scholar 

  51. Długosz, O., Banach, M.: Synthesis of layered zinc-aluminium double hydroxides modified with metal ions as photocatalysts with enhanced sorption properties. Appl. Phys. A. 128, 919 (2022). https://doi.org/10.1007/s00339-022-06045-3

    Article  ADS  CAS  Google Scholar 

  52. Liu, X., Zhao, X., Zhu, Y., Zhang, F.: Experimental and theoretical investigation into the elimination of organic pollutants from solution by layered double hydroxides. Appl. Catal. B. 140–141, 241–248 (2013). https://doi.org/10.1016/j.apcatb.2013.04.008

    Article  CAS  Google Scholar 

  53. Merka, O., Yarovyi, V., Bahnemann, D.W., Wark, M.: pH-Control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13. J. Phys. Chem. C. 115, 8014–8023 (2011). https://doi.org/10.1021/jp108637r

    Article  CAS  Google Scholar 

  54. Zhao, X., Wang, L., Xu, X., Lei, X., Xu, S., Zhang, F.: Fabrication and photocatalytic properties of novel ZnO/ZnAl2O4 nanocomposite with ZnAl2O4 dispersed inside ZnO network. AIChE J. 58, 573–582 (2012). https://doi.org/10.1002/aic.12597

    Article  ADS  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

VS: conceptualization, supervision, writing—review & editing; SL: investigation, formal analysis, methodology; AB: investigation; SK: investigation, writing—original draft; ES: investigation.

Corresponding author

Correspondence to Svitlana Levytska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydorchuk, V., Levytska, S., Biedrzycka, A. et al. Effect of hydrothermal and mechanochemical treatments on the physicochemical and photocatalytic properties of Zn–Al double hydroxide and compositions based on it. Adsorption 30, 129–140 (2024). https://doi.org/10.1007/s10450-023-00402-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00402-1

Keywords

Navigation