Skip to main content
Log in

Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption behavior of U(VI) and Th(IV) metal ions by MnFe2O4 NPs was studied as a function of pH, mass of sorbent, contact time, and temperature. Kinetic data was fitted to Pseudo second-order model and qm reached maximum value at pH 3 for Th(IV) and at pH 3.0–5.0 for U(VI) after 3 h. The Langmuir, Freundlich, and Dubinin–Raduskevich isotherm equations were applied to the adsorption data and the proper constants were derived. Adsorption isotherms were studied at different temperature to find ΔH°, ΔG°, and ΔS°. Recovery was carried out by using 0.10 M of HNO3, HCl, EDTA, Na2CO3 and NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bamdad H, Hawboldt K, MacQuarrie S (2018) A review on common adsorbents for acid gases removal: focus on biochar. Renew Sustain Energy Rev 81:1705–1720

    Google Scholar 

  2. Yua C, Han X (2015) Adsorbent material used in water treatment—a review. 2nd international workshop on materials engineering and computer sciences (IWMECS 2015)

  3. Singh NB, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Google Scholar 

  4. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Ecotoxicology and environmental safety adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    CAS  PubMed  Google Scholar 

  5. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    CAS  Google Scholar 

  6. Vakili M, Rafatullah M, Salamatinia B, Zuhairi A, Hakimi M, Bing K, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    CAS  PubMed  Google Scholar 

  7. Yim MS, Ismail AF (2015) Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater. Nucl Eng Technol 47:579–587

    Google Scholar 

  8. Khalili FI, Salameh NH, Shaybe MM (2013) Sorption of uranium(VI) and thorium(IV) by Jordanian bentonite. J Chem 586136:1–13

    Google Scholar 

  9. Khalili F, Al-Shaybe M (2010) Adsorption of thorium(IV) and uranium(VI) by Tulul al-Shabba zeolitic tuff, Jordan. Jordan J Earth Environ Sci 2(1):108–119

    Google Scholar 

  10. Rushdi IY, El-Eswed B, Alshaaer M, Khalili F, Khouri H (2009) The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. J Hazard Mater 165:379–387

    Google Scholar 

  11. Zhang Y, Li Y, Ning Y, Liu D, Tang P, Yang Z, Lu Y, Wang X (2018) Adsorption and desorption of uranium(VI) onto humic acids derived from uranium-enriched lignites. Water Sci Technol 77(4):920–930

    CAS  PubMed  Google Scholar 

  12. Chassary P, Vincent T, Guibal E (2004) Metal anion sorption on chitosan and derivative materials: a strategy polymer modification and optimum use. React Funct Polym 60:137–149

    CAS  Google Scholar 

  13. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    CAS  PubMed  Google Scholar 

  14. Benes P, Kratzer K, Vlckova S, Sebestova E (1998) Adsorption of uranium on clay and the effect of humic substances. Radiochim Acta 82:367–373

    CAS  Google Scholar 

  15. Bhatnagar A, Vilar VJ, Botelho CM, Boaventura RM (2011) A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ Technol 32:231–249

    CAS  PubMed  Google Scholar 

  16. Gomes AF, Lopez S, Dina L, Ladeira A, Claudia Q (2012) Characterization and assessment of chemical modifications of metal-bearing sludge’s arising from unsuitable disposal. J Hazard Mater 200:418–425

    Google Scholar 

  17. Mahmoud MA (2013) Removal of uranium(VI) from aqueous solution using low cost and eco-friendly adsorbents. J Chem Eng Process Technol 4(6):2157–2160

    Google Scholar 

  18. Huang G, Peng W, Yang S (2018) Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution. J Radioanal Nucl Chem 317(1):337–344

    CAS  Google Scholar 

  19. Zhao X, Tang Z, Zhao T, Wang H, Wang P, Wu F, Giesy JP (2016) Magnetic nanoparticles interaction with humic acid: in the presence of surfactants. Environ Sci Technol 50(16):8640–8648

    PubMed  Google Scholar 

  20. Das D, Sureshkumar M, Koley S, Mithal N, Pillai C (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285:447–454

    CAS  Google Scholar 

  21. Lindner H, Schneider E (2015) Review of cost estimates for uranium recovery from seawater. Energy Econ 49:9–22

    Google Scholar 

  22. Imran A (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091

    Google Scholar 

  23. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7728–7768

    CAS  PubMed  Google Scholar 

  24. Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408(1):1–13

    CAS  PubMed  Google Scholar 

  25. Nasreen SAAN, Sundarrajan S, Nizar SAA, Ramakrishna S (2019) Nanomaterials: solutions to water-concomitant challenges. Membranes 9(3):1–21

    Google Scholar 

  26. Li X, Elliott DW, Zhang W, Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122

    CAS  Google Scholar 

  27. Liu D, Liu Z, Wang C, Lai Y (2016) Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310(3):1131–1137

    CAS  Google Scholar 

  28. Addleman SR, Chouyyok W, Warner CL, Mackie KM, Warner MG, Gill G (2016) Nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Ind Eng Chem Res 55(15):4195–4207

    Google Scholar 

  29. Nekhunguni PM, Tavengwa NT, Tutu H (2017) Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions. J Environ Manag 204:571–582. https://doi.org/10.1016/j.jenvman.2017.09.034

    Article  CAS  Google Scholar 

  30. Zhu M, Wang Y, Meng D, Qin X, Diao G (2012) Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J Phys Chem C 116:16276–16285

    CAS  Google Scholar 

  31. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 398569:1–14

    Google Scholar 

  32. Naseri MG, Saion BE, Kamali A (2012) An overview on nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 synthesized by a thermal treatment method. ISRN Nanotechnol 2012:1–11

    Google Scholar 

  33. Dinesha BL, Sharanagouda H, Udaykumar N, Ramachandr CT, Dandekar AB (2017) Removal of pollutants from water/waste water using nano-adsorbents: a potential pollution mitigation. Int J Curr Microbiol Appl Sci 6(10):4868–4872

    Google Scholar 

  34. Li B, Chen L (2012) Application of magnetic molecularly imprinted polymers in analytical chemistry. Anal Methods 4(9):2613–2621

    Google Scholar 

  35. Schuth F, Lu A, Salabas EL (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Google Scholar 

  36. Harizanova R, Avramova I, Wisniewski W, Avdeev G, Tzankov D, Georgieva M, Gugov I, Russel C (2018) EBSD-investigation and magnetic properties of manganese ferrite crystallized in a sodium-silicate glass. CrystEngComm 20:4268–4276

    CAS  Google Scholar 

  37. Soliman S, Elfalaky A (2013) Theoretical investigation of MnFe2O4. J Alloys Compd 580:401–406

    Google Scholar 

  38. Deraz NM, Alarifi A (2012) Novel preparation and properties of magnesioferrite nanoparticles. J Anal Appl Pyrol 97:55–61

    CAS  Google Scholar 

  39. Gajbhiye NS, Balaji G, Ghafari M (2002) Magnetic properties of MnFe2O4 nanoparticles. Phys Stat Sol (a) 189(2):357–361

    CAS  Google Scholar 

  40. Jacintha AM, Umapathy V, Neeraja P, Rajkumar SR (2017) Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J Nanostruct Chem 7:375–387

    CAS  Google Scholar 

  41. Vignesh RH, Sankar KV, Amaresh S, Lee YS, Selvan RK (2015) Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sens Actuators B 220:50–58

    CAS  Google Scholar 

  42. Hu J, Chen G (2005) Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21(24):11173–11179

    CAS  PubMed  Google Scholar 

  43. Wu R, Qu J (2005) Removal of water-soluble azo dye by the magnetic material MnFe2O4. J Chem Technol Biotechnol 27:20–27

    Google Scholar 

  44. Naseri MG, Saion EB, Ahanger HA, Hashim M, Shaari AH (2011) Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater 32:1745–1749

    Google Scholar 

  45. Gharagozlou M (2009) Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method. J Alloys Compd 486(1):660–665

    CAS  Google Scholar 

  46. Chen D, Zhang Y, Kang Z (2013) A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chem Eng J 215–216:235–239

    Google Scholar 

  47. Lu A, Hui E, Salabas L, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    CAS  Google Scholar 

  48. Dhakal T, Mukherjee D, Hyde R, Mukherjee P, Phan MH, Srikanth H, Witanachchi S (2010) Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation. J Appl Phys 107(5): Article ID 053914-(1–6)

    Google Scholar 

  49. Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247

    CAS  Google Scholar 

  50. Gupta KA, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    CAS  PubMed  Google Scholar 

  51. Vignesh RH, Sankara KV, Amareshb S (2015) Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sens Actuators B Chem 220:1–18

    Google Scholar 

  52. Rathorea D, Mitra S (2016) MnFe2O4 as a gas sensor towards SO2 and NO2 gases. AIP Conf Proc 1728:020166-1–020166-4

    Google Scholar 

  53. Pal M, Rakshit R, Mandal K (2014) Surface modification of MnFe2O4 nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties. ACS Appl Mater Interfaces 6:4903–4910

    CAS  PubMed  Google Scholar 

  54. Lu HA, Schmidt W, Matoussevitch N, Bonnermann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schuth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem 116:4403–4409

    Google Scholar 

  55. Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    CAS  Google Scholar 

  56. Dubey S, Banerjee S, Upadhyay SN, Sharma YC (2017) Application of common nano-materials for removal of selected metallic species from water and wastewaters: a critical review. J Mol Liq 240:656–677

    CAS  Google Scholar 

  57. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    CAS  PubMed  Google Scholar 

  58. Khan H, Haleem M, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169

    CAS  PubMed  Google Scholar 

  59. Savvin SB (1961) Analytical use of arsenazo(III), determination of thorium, zirconium, uranium and rare earth elements, vol 8. Pergmon Press Ltd, Oxford, pp 673–685

    Google Scholar 

  60. Cali E, Qi J, Preedy O, Chen S, Boldrin D, Branford WR, Vandeperre L, Ryan MP (2018) Functionalised magnetic nanoparticles for uranium adsorption with ultra-high capacity and selectivity. J Mater Chem A 6:3063–3073

    CAS  Google Scholar 

  61. Jing Z, Wu S (2004) Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater Lett 58:3637–3640

    CAS  Google Scholar 

  62. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    CAS  Google Scholar 

  63. Torapava N, Persson I, Eriksson L, Lundberg D (2009) Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) hydrates. Inorg Chem 48(24):11712–11723

    CAS  PubMed  Google Scholar 

  64. Szymczyk A, Fievet P, Mullet M, Reggiani JC, Pagetti J (1998) Comparison of two electrokinetic methods—electroosmosis and streaming potential—to determine the zeta-potential of plane ceramic membranes. J Membr Sci 143:189–195

    CAS  Google Scholar 

  65. Nethaji S, Sivasamy A, Mandal AB (2013) Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol 10:231–242

    CAS  Google Scholar 

  66. Szabo Z, Toraishi T, Vallet V, Grenthe I (2006) Solution coordination chemistry of actinides: thermodynamics, structure and reaction mechanisms. Coord Chem Rev 250:784–815

    CAS  Google Scholar 

  67. Zhang L, Chen Q, Zheng J, Yang Q, Dang Z (2019) Insights into the glyphosate adsorption behavior and mechanism by a MnFe2O4@cellulose-activated carbon magnetic hybrid. ACS Appl Mater Interfaces 11(17):15478–15488

    PubMed  Google Scholar 

  68. Xiao Y, Liang H, Wang Z (2013) MnFe2O4/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium. Mater Res Bull 48(10):3910–3915

    CAS  Google Scholar 

  69. Bhaumik M, Setshedi K, Maity A, Onyango MS (2013) Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol 110:11–19

    CAS  Google Scholar 

  70. Robati D (2013) Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostructure Chem 3(1):55–61

    Google Scholar 

  71. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interface Sci 47(3):755–765

    CAS  Google Scholar 

  72. Humelnicu D, Dinu MV, Dragan ES (2011) Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185(1):447–455

    CAS  PubMed  Google Scholar 

  73. Khalili FI, Al-Kakah MS, Ayoub MM, Ismail LS (2019) Sorption of Pb(II), Cd(II) and Zn(II) ions from aqueous solution using Jordanian kaolinite modified by the amino acids methionine or cysteine. Desalin Water Treat 151:280–294

    CAS  Google Scholar 

  74. Salameh SIY, Khalili FI, Al-Dujaili AH (2017) Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int J Miner Process 168:9–18

    CAS  Google Scholar 

  75. Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3(1):38–45

    Google Scholar 

  76. Liu S (2015) Cooperative adsorption on solid surfaces. J Colloid Interface Sci 450(2015):224–238

    CAS  PubMed  Google Scholar 

  77. Bowman BT (1981) Anomalies in the log Freundlich equation resulting in deviations in adsorption k values of pesticides and other organic compounds when the system of units is changed. J Environ Sci Health B 16(2):113–123

    CAS  PubMed  Google Scholar 

  78. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherm. J Chem 3039817:1–11

    Google Scholar 

  79. Tretiakov KV, Bishop KJM, Kowalczyk B, Jaiswal A, Poggi MA, Grzybowski BA (2009) Mechanism of the cooperative adsorption of oppositely charged nanoparticles. J Phys Chem A 113(16):3799–3803

    CAS  PubMed  Google Scholar 

  80. Liu P, Qi W, Du Y, Li Z, Wang J, Bi J, Wu W (2014) Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 57(11):1483–1490

    CAS  Google Scholar 

  81. Mirzabe GH, Keshtkar AR (2015) Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. J Ind Eng Chem 26(25):277–285

    CAS  Google Scholar 

  82. Husnain SM, Kim HJ, Um W, Chang YY, Chang YS (2017) Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for uranium removal. Ind Eng Chem Res 56(35):9821–9830

    CAS  Google Scholar 

  83. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216

    PubMed  Google Scholar 

  84. Skopp J (2009) Derivation of the Freundlich adsorption isotherm from kinetics. J Chem Educ 86(11):1341–1344

    CAS  Google Scholar 

  85. Li G, Xu H, Li J, Chen C, Ren X (2016) Interaction of Th(IV) with graphene oxides: batch experiments, XPS investigation, and modeling. J Mol Liq 213:58–68

    Google Scholar 

  86. Reed DA, Keitz BK, Oktawiec J, Mason JA, Runcevski T, Xiao DJ, Long JR (2017) A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature 550:96–100

    CAS  PubMed  Google Scholar 

  87. Binabaj MA, Nowee SM, Ramezanian N (2018) Comparative study on adsorption of chromium(VI) from industrial wastewater onto nature-derived adsorbents (brown coal and zeolite). Int J Environ Sci Technol 15(7):1509–1520

    Google Scholar 

  88. Liu J, Luo M, Yuan Z, Ping A (2013) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioanal Nucl Chem 298(2):1427–1434

    CAS  Google Scholar 

  89. Huang G, Chen Z, Wang L, Lv T, Shi J (2016) Removal of thorium(IV) from aqueous solution using magnetic ion-imprinted chitosan resin. J Radioanal Nucl Chem 310(3):1265–1272

    CAS  Google Scholar 

  90. Zhou L, Zou H, Wang Y, Huang Z, Wang Y, Luo T, Liu Z, Adesina AA (2016) Adsorption of uranium(VI) from aqueous solution using magnetic carboxymethyl chitosan nano-particles functionalized with ethylenediamine. J Radioanal Nucl Chem 308(3):935–946

    CAS  Google Scholar 

  91. Pan N, Li L, Ding J, Li S, Wang R, Jin Y, Wang X, Xia C (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115

    CAS  PubMed  Google Scholar 

  92. Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Atia AA (2017) Studies on the recovery of Th(IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors. Hydrometallurgy 169:89–98

    CAS  Google Scholar 

  93. Dastbaz A, Keshtkar AR (2014) Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Appl Surf Sci 293(28):336–344

    CAS  Google Scholar 

  94. Elabd AA, Abo-aly MM, Zidan WI, Bakier E, Attia MS (2013) Modified Amberlite IR120 by magnetic nano iron-oxide for uranium removal. Anal Chem Lett 3(1):46–64

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the School of Graduate Studies at The University of Jordan, and The German Academic Exchange Service for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Alaqarbeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaqarbeh, M., Khalili, F.I. & Kanoun, O. Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV). J Radioanal Nucl Chem 323, 515–537 (2020). https://doi.org/10.1007/s10967-019-06953-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06953-4

Keywords

Navigation