Skip to main content
Log in

Gas-sensing performance of SnO2-based chemoresistive sensors after irradiation with alpha particles and gamma-rays

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

SnO2-based chemoresistive sensors were tested for the detection of H2O and CO impurities both before and after exposure to α-particles and γ-rays, assessing their radiation resistance for use in moderately radioactive environments. The materials examined were SnO2 with gold nanoparticles, and a mix of Sn-, Ti-, and Nb-oxides. The performance was evaluated in both an open-ended gas-flow setup and in a gas-loop system. Post-irradiation characterization via scanning electron microscopy and energy-dispersive X-ray spectroscopy was performed to assess morphological changes. Preliminary results showed a fast and efficient response of the sensors after irradiation, indicating their suitability for this novel use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Türler A, Pershina V (2013) Advances in the production and chemistry of the heaviest elements. Chem Rev. https://doi.org/10.1021/cr3002438

    Article  PubMed  Google Scholar 

  2. Maugeri EA, Neuhausen J, Eichler R, Piguet D, Mendonça TM, Stora T, Schumann D (2014) Thermochromatography study of volatile polonium species in various gas atmospheres. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2013.11.024

    Article  Google Scholar 

  3. Karlsson E, Neuhausen J, Eichler R, Aerts A, Danilov I, Vögele A, Türler A (2020) Thermochromatographic behavior of iodine in fused silica columns when evaporated from lead–bismuth eutectic. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07420-1

    Article  Google Scholar 

  4. Karlsson E, Neuhausen J, Eichler R, Danilov I, Vögele A, Türler A (2021) Thermochromatographic behavior of iodine in 316l stainless steel columns when evaporated from lead–bismuth eutectic. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-07682-3

    Article  Google Scholar 

  5. Neuhausen J (2006) Investigations on the release of mercury from liquid eutectic lead–bismuth alloy under different gas atmospheres. Nucl Instrum Methods Phys Res A. https://doi.org/10.1016/j.nima.2006.02.025

    Article  Google Scholar 

  6. Serov A, Aksenov NV, Bozhikov GA, Eichler R, Dressler R, Lebedev VY, Petrushkin O, Piguet D, Shishkin S, Tereshatov E, Türler A (2011) Adsorption interaction of astatine species with quartz and gold surfaces. Radiochim Acta. https://doi.org/10.1524/ract.2011.1850

    Article  Google Scholar 

  7. Ray A, Bristow T, Whitmore C, Mosely J (2018) On-line reaction monitoring by mass spectrometry, modern approaches for the analysis of chemical reactions. Mass Spectrom Rev. https://doi.org/10.1002/mas.21539

    Article  PubMed  Google Scholar 

  8. Li X, Wang X, Li L, Bai Y, Liu H (2015) Direct analysis in real time mass spectrometry: a powerful tool for fast analysis. Mass Spectrom Lett. https://doi.org/10.5478/MSL.2015.6.1.1

    Article  Google Scholar 

  9. Sun J, Yin Y, Li W, Jin O, Na N (2022) Chemical reaction monitoring by ambient mass spectrometry. Mass Spectrom Rev. https://doi.org/10.1002/mas.21668

    Article  PubMed  Google Scholar 

  10. Kuo TH, Dutkiewicz EP, Pei J, Hsu CC (2019) Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities. Anal Chem. https://doi.org/10.1021/acs.analchem.9b05454

    Article  PubMed  Google Scholar 

  11. Perreault P, Robert E, Patience GS (2019) Experimental methods in chemical engineering: mass spectrometry—MS. Can J Chem Eng. https://doi.org/10.1002/cjce.23466

    Article  Google Scholar 

  12. Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM, Benassi M, Cunha IBS, Eberlin MN (2010) Ambient mass spectrometry: bringing MS into the “real world.” Anal Bioanal Chem. https://doi.org/10.1007/s00216-010-3808-3

    Article  PubMed  Google Scholar 

  13. Neri G (2015) First fifty years of chemoresistive gas sensors. Chemosensors. https://doi.org/10.3390/chemosensors3010001

    Article  Google Scholar 

  14. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors. https://doi.org/10.3390/s100302088

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zonta G, Astolfi M, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Gherardi S, Guidi V, Landini N, Valt M (2020) Reproducibility tests with zinc oxide thick-film sensors. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.11.178

    Article  Google Scholar 

  16. Astolfi M, Rispoli G, Gherardi S, Zonta G, Malagù C (2023) Reproducibility and repeatability tests on (SnTiNb)O2 sensors in detecting ppm-concentrations of CO and up to 40% of humidity: a statistical approach. Sensors. https://doi.org/10.3390/s23041983

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zonta G, Rispoli G, Malagù C, Astolfi M (2023) Overview of gas sensors focusing on chemoresistive ones for cancer detection. Chemosensors. https://doi.org/10.3390/chemosensors11100519

    Article  Google Scholar 

  18. Patent, Malagù C, Zonta G, Gherardi S, Giberti A, Landini N, Gaiardo A (2014) Dispositivo per lo screening preliminare di adenomi al colon-retto. National #: RM2014A000595, European #: 3210013 (Germany, UK)

  19. Patent, Malagù C, Gherardi S, Zonta G, Landini N, Giberti A, Fabbri B, Gaiardo A, Anania G, Rispoli G, Scagliarini L (2015) Combinazione di materiali semiconduttori nanoparticolati per uso nel distinguere cellule normali da cellule tumorali. Italian Patent 102015000057717, 10

  20. Zonta G, Anania G, Feo C, Gaiardo A, Gherardi S, Giberti A, Guidi V, Landini N, Palmonari C, Ricci L (2018) Use of gas sensors and FOBT for the early detection of colorectal cancer. Sens Actuators B Chem. https://doi.org/10.3390/proceedings1040398

    Article  Google Scholar 

  21. Zonta G, Malagù C, Gherardi S, Giberti A, Pezzoli A, De Togni A, Palmonari C (2020) Clinical validation results of an innovative non-invasive device for colorectal cancer preventive screening through fecal exhalation analysis. Cancers. https://doi.org/10.3390/cancers12061471

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zonta G, Anania G, Astolfi M, Feo C, Gaiardo A, Gherardi S, Giberti A, Guidi V, Landini N, Palmonari C (2019) Chemoresistive sensors for colorectal cancer preventive screening through fecal odor: double-blind approach. Sens Actuators B Chem. https://doi.org/10.3390/proceedings2019014035

    Article  Google Scholar 

  23. Astolfi M, Rispoli G, Anania G, Nevoso V, Artioli E, Landini N, Benedusi M, Melloni E, Secchiero P, Tisato V (2020) Colorectal cancer study with nanostructured sensors: tumor marker screening of patient biopsies. Nanomaterials. https://doi.org/10.3390/nano10040606

    Article  PubMed  PubMed Central  Google Scholar 

  24. Landini N, Anania G, Astolfi M, Fabbri B, Guidi V, Rispoli G, Valt M, Zonta G, Malagù C (2020) Nanostructured chemoresistive sensors for oncological screening and tumor markers tracking: single sensor approach applications on human blood and cell samples. Sensors. https://doi.org/10.3390/s20051411

    Article  PubMed  PubMed Central  Google Scholar 

  25. Astolfi M, Rispoli G, Benedusi M, Zonta G, Landini N, Valacchi G, Malagù C (2022) Chemoresistive sensors for cellular type discrimination based on their exhalations. Nanomaterials. https://doi.org/10.3390/nano12071111

    Article  PubMed  PubMed Central  Google Scholar 

  26. Astolfi M, Rispoli G, Anania G, Artioli E, Nevoso V, Zonta G, Malagù C (2021) Tin titanium, tantalum, vanadium and niobium oxide-based sensors to detect colorectal cancer exhalations in blood samples. Molecules. https://doi.org/10.3390/molecules26020466

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E (1999) Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens Actuators B Chem. https://doi.org/10.1016/S0925-4005(99)00054-4

    Article  Google Scholar 

  28. Gaiardo A, Bellutti P, Fabbri B, Gherardi S, Giberti A, Guidi V, Landini N, Malagù C, Pepponi G, Valt M, Zonta G (2016) Chemoresistive gas sensor based on SiC thick film: possible distinctive sensing properties between H2S and SO2. Procedia Eng. https://doi.org/10.1016/j.proeng.2016.11.191

    Article  Google Scholar 

  29. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci. https://doi.org/10.1080/10408430490888977

    Article  Google Scholar 

  30. Velmathi G, Mohan S, Henry R (2016) Analysis and review of tin oxide-based chemoresistive gas sensor. IETE Tech Rev. https://doi.org/10.1080/02564602.2015.1080603

    Article  Google Scholar 

  31. Kang X, Deng N, Yan Z, Pan Y, Sun W, Zhang Y (2022) Resistive-type VOCS and pollution gases sensor based on SnO2: a review. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2021.106246

    Article  Google Scholar 

  32. Kwon YJ, Kang SY, Wu P, Peng Y, Kim SS, Kim HW (2016) Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b01619

    Article  PubMed  Google Scholar 

  33. Van Duy N, Toan TH, Hoa ND, Van Hieu N (2015) Effects of gamma irradiation on hydrogen gas-sensing characteristics of Pd–SnO2 thin film sensors. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2015.07.070

    Article  Google Scholar 

  34. Lavanya N, Sekar C, Anithaa AC, Sudhan N, Asokan K, Bonavita A, Leonardi SG, Neri G (2016) Investigations on the effect of gamma-ray irradiation on the gas sensing properties of SnO2 nanoparticles. Nanotechnology. https://doi.org/10.1088/0957-4484/27/38/385502

    Article  PubMed  Google Scholar 

  35. Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) Sol-gel processed TiO2-based nano-sized powders for use in thick film gas sensors for atmospheric pollutant monitoring. J Sol-Gel Sci Technol. https://doi.org/10.1023/A:1011236908751

    Article  Google Scholar 

  36. Carotta MC, Ferrari E, Giberti A, Malagù C, Nagliati M, Gherardi S, Vendemiati B, Martinelli G (2006) Semiconductor gas sensors for environmental monitoring. Adv Sci Technol 45:1818–1827

    Article  CAS  Google Scholar 

  37. Gaiardo A, Krik S, Valt M, Fabbri B, Tonezzer M, Feng Z, Guidi V, Bellutti P (2021) Development of a sensor array based on Pt, Pd, Ag and Au nanocluster decorated SnO2 for precision agriculture. In: ECS Meeting Abstracts, vol 57. IOP Publishing, p 1550

  38. Carotta MC, Benetti M, Guidi V, Gherardi S, Vendemiati B, Martinelli G (2006) Nanostructured (Sn, Ti, Nb)O2 solid solution for hydrogen sensing. MRS Online Proceedings Library (OPL), vol 915: Symposium R—nanostructured materials and hybrid composites for gas sensors and biomedical applications, Cambridge University Press. https://doi.org/10.1557/PROC-0915-R07-10

  39. Carotta MC, Feroni M, Gnani D, Guidi V, Merli M, Martinelli G, Casale MC, Notaro M (1999) Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens Actuators B Chem. https://doi.org/10.1016/S0925-4005(99)00148-3

    Article  Google Scholar 

  40. Nesaraja CD (2015) Nuclear data sheets for A = 241. Nucl Data Sheets. https://doi.org/10.1016/j.nds.2015.11.004

    Article  Google Scholar 

  41. Browne E, Tuli JK (2007) Nuclear data sheets for A = 137. Nucl Data Sheets. https://doi.org/10.1016/j.nds.2007.09.002

    Article  Google Scholar 

  42. Zonta G, Anania G, Fabbri B, Gaiardo A, Gherardi S, Giberti A, Guidi V, Landini N, Malagù C (2015) Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2015.04.080

    Article  Google Scholar 

  43. Pugh SF (1957) The effects of penetrating radiations on materials. Br J Appl Phys. https://doi.org/10.1088/0508-3443/8/S6/308

    Article  Google Scholar 

  44. Davisson CM (1968) Interaction of γ-radiation with matter. In: Siegbahn K (ed) Alpha- Beta- and Gamma-ray spectroscopy. Elsevier, Amsterdam, pp 37–78

    Chapter  Google Scholar 

  45. Vavilov VS, Kekelidze NP, Smirnov LS (1965) Changes in the properties of semiconductors due to bombardment with fast electrons, gamma rays, neutrons, and heavy charged particles, In: Effects of Radiation on Semiconductors, Springer Science+Business Media, New York

  46. Nucleonica GmbH, https://www.nucleonica.com/

  47. Tyagi P, Sharma S, Tomar M, Singh F, Gupta V (2016) Swift heavy ion irradiated SnO2 thin film sensor for efficient detection of SO2 gas. Nucl Instrum Methods Phys Res B. https://doi.org/10.1016/j.nimb.2016.03.048

    Article  Google Scholar 

  48. Merdrignac OM, Moseley PT, Peat R, Sofield CJ, Sugden S (1992) The modification of gas-sensing properties of semiconducting oxides by treatment with ionizing radiation. Sens Actuators B Chem. https://doi.org/10.1016/0925-4005(92)80380-G

    Article  Google Scholar 

  49. Wang X, Qin H, Chen Y, Hu J (2014) Sensing mechanism of SnO2 (110) surface to CO: density functional theory calculations. J Phys Chem C Nanomater Interfaces. https://doi.org/10.1021/jp501880r

    Article  PubMed  PubMed Central  Google Scholar 

  50. Al-Hashem M, Akbar S, Morris P (2019) Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2019.126845

    Article  Google Scholar 

  51. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton. https://doi.org/10.1201/9781420007282

    Book  Google Scholar 

  52. Watanabe K, Ohgaki T, Saito N, Hishita S, Sakaguchi I, Haneda H, Ohashi N (2012) Interaction of water vapor with SnO2. In: Proceedings 14th International Meeting on Chemical Sensors—IMCS 2012, https://doi.org/10.5162/IMCS2012/P2.0.9

  53. Santarossa G, Hahn K, Baiker A (2013) Free energy and electronic properties of water adsorption on the SnO2 (110) surface. Langmuir. https://doi.org/10.1021/la400313a

    Article  PubMed  Google Scholar 

  54. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram. https://doi.org/10.1023/A:1014405811371

    Article  Google Scholar 

  55. Xu J, Guo M, Lu M, He H, Yang G, Xu J (2018) Effect of alpha-particle irradiation on InGaP/GaAs/Ge triple-junction solar cells. Materials. https://doi.org/10.3390/ma11060944

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sugiyama M, Yasuniwa T, Nakanishi H, Chichibu SF, Kimura S (2010) Optical and solar cell properties of alpha-ray, proton, and gamma-ray irradiated Cu(In, Ga)Se2 thin films and solar cells. Jpn J Appl Phys. https://doi.org/10.1143/JJAP.49.042302

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. N. Samadi (PSI) for the SEM analysis of the SnO2(Au) chemosensors.

Funding

This project has been supported and partially funded by the Italian Ministry of Education, University and Research (PRIN 2017KC8WMB).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by GZ, MA, NMC, and PS. NC conducted SEM and EDX data acquisition and analysis. MK irradiated the samples and performed the corresponding calculations. The initial manuscript draft was written by NMC. All authors participated in commenting, editing, and reviewing the manuscript, and they all read and approved the final version.

Corresponding authors

Correspondence to G. Zonta or N. M. Chiera.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3254 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonta, G., Astolfi, M., Cerboni, N. et al. Gas-sensing performance of SnO2-based chemoresistive sensors after irradiation with alpha particles and gamma-rays. J Radioanal Nucl Chem 333, 995–1004 (2024). https://doi.org/10.1007/s10967-023-09340-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09340-2

Keywords

Navigation