Skip to main content
Log in

Chitosan-poly(imide dioxime) semi-interpenetrating network hydrogel for efficient uranium recovery from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The development of high-performance adsorbents is highly demanded in sustainable production of nuclear power. Herein, porous chitosan-poly(imide dioxime) (Cs-PIDO) hydrogel with semi-interpenetrating structure was prepared. Cs-PIDO-1 showed rapid kinetics, high adsorption capacity and excellent regeneration capability. Impressively, the capture speed of Cs-PIDO-1 reached 0.35 mg g−1 d−1 during the first 2-week extraction and its 4-week adsorption capacity was up to 5.75 mg g−1 in real seawater. The superior uranium harvesting performance originated from the cooperation effect of hierarchically porous structure and PIDO groups. This work highlights the importance of rational designed structure and functionality in enhancing the uranium uptake capability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987. https://doi.org/10.1126/science.1072357

    Article  CAS  PubMed  Google Scholar 

  2. Monnet A, Gabriel S, Percebois J (2017) Long-term availability of global uranium resources. Resour Policy 53:394–407. https://doi.org/10.1016/j.resourpol.2017.07.008

    Article  Google Scholar 

  3. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  PubMed  Google Scholar 

  4. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill G, Kuo LJ, Wood J, Choe KY, Schneider E, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083. https://doi.org/10.1021/ie4039828

    Article  CAS  Google Scholar 

  5. Park J, Gill GA, Strivens JE, Kuo LJ, Jeters RT, Avial A, Wood JR, Schlafer NJ, Janke CJ, Miller EA, Thomas M, Addleman RS, Bonheyo GT (2016) Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind Eng Chem Res 55:4328–4338. https://doi.org/10.1021/acs.iecr.5b03457

    Article  CAS  Google Scholar 

  6. Parker BF, Zhang Z, Rao L, Arnold J (2018) An overview and recent progress in the chemistry of uranium extraction from seawater. Dalton Trans 47:639–644. https://doi.org/10.1039/c7dt04058j

    Article  CAS  PubMed  Google Scholar 

  7. Zhao ZW, Lei RC, Zhang YZ, Cai TT, Han B (2022) Defect controlled MOF-808 for seawater uranium capture with high capacity and selectivity. J Mol Liq 367:120514. https://doi.org/10.1016/j.molliq.2022.120514

    Article  CAS  Google Scholar 

  8. Jiao GJ, Ma JL, Zhang JQ, Li YC, Liu KN, Sun RC (2022) Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater. Sep Purif Technol 287:120571. https://doi.org/10.1016/j.seppur.2022.120571

    Article  CAS  Google Scholar 

  9. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  10. Dragan ES, Dinu MV (2020) Advances in porous chitosan-based composite hydrogels: synthesis and applications. React Funct Polym 146:104372. https://doi.org/10.1016/j.reactfunctpolym.2019.104372

    Article  CAS  Google Scholar 

  11. Zeng MX, Wu W, Fang JJ, Li SF, Zhou ZH (2019) Fabrication of chitosan/alginate porous sponges as adsorbents for the removal of acid dyes from aqueous solution. J Mater Sci 54:9995–10008. https://doi.org/10.1007/s10853-019-03602-9

    Article  CAS  Google Scholar 

  12. Chi FT, Zhang S, Wen J, Xiong J, Hu S (2019) Functional polymer brushes for highly efficient extraction of uranium from seawater. J Mater Sci 54:3572–3585. https://doi.org/10.1007/s10853-018-3040-7

    Article  CAS  Google Scholar 

  13. Li Z, Yu ZQ, Wu YD, Wu XL, Wan Y, Yuan YH, Wang N (2020) Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater. Chem Eng J 390:124648. https://doi.org/10.1016/j.cej.2020.124648

    Article  CAS  Google Scholar 

  14. Shi S, Wu R, Meng SL, Xiao GP, Ma CX, Yang GC, Wang N (2022) High-strength and anti-biofouling nanofiber membranes for enhanced uranium recovery from seawater and wastewater. J Hazard Mater 436:128983. https://doi.org/10.1016/j.jhazmat.2022.128983

    Article  CAS  PubMed  Google Scholar 

  15. Ma CX, Gao JX, Wang D, Yuan YH, Wen J, Yan BJ, Zhao SL, Zhao XM, Sun Y, Wang XL, Wang N (2019) Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv Sci 6:1900085. https://doi.org/10.1002/advs.201900085

    Article  CAS  Google Scholar 

  16. Wang H, Zheng BH, Xu TH, Cao M, Gao F, Zhou GB, Ma C, Dang J, Yao WK, Wu KC, Liu T, Yuan YH, Fu QY, Wang N (2022) Macroporous hydrogel membrane by cooperative reaming for highly efficient uranium extraction from seawater. Sep Purif Technol 289:120823. https://doi.org/10.1016/j.seppur.2022.120823

    Article  CAS  Google Scholar 

  17. Zhang Z, Wang XL, Zhou JB, Zhang HX, Wu F, Wu WS (2022) Semi-IPN Alg/PAO microspheres for the efficient removal of U(VI) from alkaline solution by experimental and DFT study. Sep Purif Technol 296:121369. https://doi.org/10.1016/j.seppur.2022.121369

    Article  CAS  Google Scholar 

  18. Ahmad M, Ren JQ, Zhang YF, Kou H, Naik M, Zhang QY, Zhang BL (2022) Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chem Eng J 427:130934. https://doi.org/10.1016/j.cej.2021.130934

    Article  CAS  Google Scholar 

  19. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T (2000) Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat Phys Chem 59:405–411. https://doi.org/10.1016/S0969-806X(00)00298-X

    Article  CAS  Google Scholar 

  20. Li R, Pang LJ, Ma HJ, Liu XY, Zhang MX, Gao QH, Wang HL, Xing Z, Wang MH, Wu GZ (2017) Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity. J Radioanal Nucl Chem 311:1771–1779. https://doi.org/10.1007/s10967-016-5117-6

    Article  CAS  Google Scholar 

  21. Omichi H, Katakai A, Sugo T, Okamoto J (1986) A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. II. Effect of grafting of hydrophilic monomers. Sep Sci Technol 21:299–313. https://doi.org/10.1080/01496398608058379

    Article  CAS  Google Scholar 

  22. Oyola Y, Sheng D (2016) High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater. Dalton Trans 45:8824–8834. https://doi.org/10.1039/c6dt01114d

    Article  CAS  PubMed  Google Scholar 

  23. Shi S, Li BC, Qian YX, Mei PP, Wang N (2020) A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater. Chem Eng J 397:125337. https://doi.org/10.1016/j.cej.2020.125337

    Article  CAS  Google Scholar 

  24. Yan BJ, Ma CX, Gao JX, Yuan YH, Wang N (2020) An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 32:1906615. https://doi.org/10.1002/adma.201906615

    Article  CAS  Google Scholar 

  25. Lin K, Sun WY, Feng LJ, Wang H, Feng TT, Zhang JC, Cao M, Zhao SL, Yuan YH, Wang N (2022) Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater. Chem Eng J 430:133121. https://doi.org/10.1016/j.cej.2021.133121

    Article  CAS  Google Scholar 

  26. Liu T, Xie ZJ, Chen MW, Tang S, Liu YJ, Wang J, Zhang RQ, Wang H, Guo X, Gu AP, Yuan YH, Wang N (2022) Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chem Eng J 430:133182. https://doi.org/10.1016/j.cej.2021.133182

    Article  CAS  Google Scholar 

  27. Liu CK, Bai RB (2014) Recent advances in chitosan and its derivatives as adsorbents for removal of pollutants from water and wastewater. Curr Opin Chem Eng 4:62–70. https://doi.org/10.1016/j.coche.2014.01.004

    Article  Google Scholar 

  28. Liu ZJ, Zhou SQ (2017) Removal of humic acid from aqueous solution using polyacrylamide/chitosan semi-IPN hydrogel. Water Sci Technol 1:16–26. https://doi.org/10.2166/wst.2018.064

    Article  CAS  Google Scholar 

  29. Yu F, Yang PY, Yan ZQ, Zhang XC, Ma J (2021) Double-network hydrogel adsorbents for environmental applications. Chem Eng J 426:131900. https://doi.org/10.1016/j.cej.2021.131900

    Article  CAS  Google Scholar 

  30. Dhand AP, Galarraga JH, Burdick JA (2021) Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol 39:519–538. https://doi.org/10.1016/j.tibtech.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  31. Liu RR, Wen SX, Sun Y, Yan BJ, Wang JW, Chen L, Peng SY, Ma C, Cao XY, Ma CX, Duan GG, Shi S, Yuan YH, Wang N (2021) A nanoclay enhanced amidoxime-functionalized double-network hydrogel for fast and massive uranium recovery from seawater. Chem Eng J 422:130060. https://doi.org/10.1016/j.cej.2021.130060

    Article  CAS  Google Scholar 

  32. Zhu JH, Zhao LN, Song DL, Yu J, Liu Q, Liu JY, Chen RR, Sun GH, Wang J (2022) Functionalized GO-doped double network antibacterial hydrogels for efficient uranium extraction from seawater. Desalination 540:115993. https://doi.org/10.1016/j.desal.2022.115993

    Article  CAS  Google Scholar 

  33. Abney CW, Mayes RT, Piechowicz M, Lin Z, Bryantsev VS, Veith GM, Dai S, Lin W (2016) XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies. Energy Environ Sci 9:448–453. https://doi.org/10.1039/c5ee02913a

    Article  CAS  Google Scholar 

  34. Bayramoglu G, Arica MY (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater 226:117–124. https://doi.org/10.1016/j.micromeso.2015.12.040

    Article  CAS  Google Scholar 

  35. Cheng G, Zhang AR, Zhao ZW, Chai ZM, Hu BW, Han B, Ai YJ, Wang XK (2021) Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci Bull 66:1994–2001. https://doi.org/10.1016/j.scib.2021.05.012

    Article  CAS  Google Scholar 

  36. Wang D, Song JN, Wen J, Yuan YH, Liu ZL, Lin S, Wang HY, Wang HL, Zhao SL, Zhao XM, Fang MH, Lei M, Li B, Wang N, Wang XL, Wu H (2018) Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv Energy Mater 8:02607. https://doi.org/10.1002/aenm.201802607

    Article  CAS  Google Scholar 

  37. Wang D, Song JN, Lin S, Wen J, Ma CX, Yuan YH, Lei M, Wang XL, Wang N, Wu H (2019) A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv Funct Mater 29:01009. https://doi.org/10.1002/adfm.201901009

    Article  CAS  Google Scholar 

  38. Shi S, Qian YX, Mei PP, Yuan YH, Jia N, Dong MY, Fan JC, Guo ZH, Wang N (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 71:104629. https://doi.org/10.1016/j.nanoen.2020.104629

    Article  CAS  Google Scholar 

  39. Luna MSD, Ascione C, Santillo C, Verdolotti L, Lavorgna M, Buonocore GG, Castaldo R, Filippone G, Xia H, Ambrosio L (2019) Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr Polym 211:195–203. https://doi.org/10.1016/j.carbpol.2019.02.002

    Article  CAS  Google Scholar 

  40. Liu NJ, Li CC, Bai J, Liang H, Gao QQ, Wang NN, Guo RB, Qin Z, Mo ZL (2021) A high-capacity amidoxime-functionalized magnetic composite for selective uranium capture in salt lake water. J Environ Chem Eng 9:106688. https://doi.org/10.1016/j.jece.2021.106688

    Article  CAS  Google Scholar 

  41. Huang C, Xu L, Xu X, Ma L, Bao HL, Liao J, Wang JJ, Han JG, Xu G, Huang DM, Ye BJ, Zhang HJ, Wu MH, Zhao XY, Ma HJ (2022) Highly amidoxime utilization ratio of porous poly(cyclic imide dioxime) nanofiber for effective uranium extraction from seawater. Chem Eng J 443:136312. https://doi.org/10.1016/j.cej.2022.136312

    Article  CAS  Google Scholar 

  42. Ivanov AS, Leggett CJ, Parker BF, Zhang ZC, Arnold J, Dai S, Abney CW, Bryantsev VS, Rao LF (2017) Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nat Commun 8:1560. https://doi.org/10.1038/s41467-017-01443-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22176055).

Author information

Authors and Affiliations

Authors

Contributions

YZ: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing—Original Draft; TC: Data curation, Formal analysis, Investigation; ZZ: Data curation, Formal analysis; HB: Funding acquisition, Resources, Project administration, Writing—Review and Editing, Supervision.

Corresponding author

Correspondence to Bing Han.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 9995 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, T., Zhao, Z. et al. Chitosan-poly(imide dioxime) semi-interpenetrating network hydrogel for efficient uranium recovery from seawater. J Radioanal Nucl Chem 333, 31–41 (2024). https://doi.org/10.1007/s10967-023-09264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09264-x

Keywords

Navigation