Skip to main content
Log in

Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) fibrous adsorbents with different molar content of amidoxime (M AO) and acrylic acid (M AA) were prepared by graft polymerization of acrylonitrile (AN) and acrylic acid (AA), followed by amidoximation. Uranium adsorption experiments in both artificial and natural seawater were carried out to investigate the effect of M AO and M AA on the uranium adsorption capacity of UHMWPE fibrous adsorbents. Adsorption results showed that the UHMWPE fibrous adsorbent with M AO = 4.27 and M AA = 4.64 mmol/g-ads exhibited better uranium adsorption capacity in both artificial (7.01 mg-U/g-ads) and natural (0.77 mg-U/g-ads) seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zeng ZH, Wei YQ, Shen L, Hua DB (2015) Cationically charged poly(amidoxime)-grafted polypropylene nonwoven fabric for potential uranium extraction from seawater. Ind Eng Chem Res 54:8699–8705

    Article  CAS  Google Scholar 

  2. Park J, Jeters RT, Kuo LJ, Strivens JE, Gill GA, Schlafer NJ, Bonheyo GT (2016) Potential impact of seawater uranium extraction on marine life. Ind Eng Chem Res 55:4278–4284

    Article  CAS  Google Scholar 

  3. Acharya C, Chandwadkar P, Joseph D, Apte SK (2013) Uranium (VI) recovery from saline environment by a marine unicellular cyanobacterium, Synechococcus elongatus. J Radioanal Nucl Chem 295:845–850

    Article  CAS  Google Scholar 

  4. Yue YF, Mayes RT, Kim J, Fulvio PF, Sun XG, Tsouris C, Chen JH, Brown S, Dai S (2013) Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew Chem Int Ed 52:13458–13462

    Article  CAS  Google Scholar 

  5. Chamila G, Joanna G, Dai S, Jaroniec M (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3:11650–11659

    Article  Google Scholar 

  6. Tamada M, Seko N, Yoshii F (2004) Application of radiation-graft material for metal adsorbent and crosslinked natural polymer for healthcare product. Radiat Phys Chem 71:221–225

    Article  Google Scholar 

  7. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde DJ (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387

    Article  CAS  Google Scholar 

  8. Kim J, Oyola Y, Tsouris C, Hexel CR, Mayes RT, Janke CJ, Dai S (2016) Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind Eng Chem Res 52:9433–9440

    Article  Google Scholar 

  9. Kim J, Tsouris C, Oyola Y, Janke CJ, Mayes RT, Dai S, Gill GA, Kuo LJ, Wood J, Choe KY, Schneider E, Lindner H (2014) Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind Eng Chem Res 53:6076–6083

    Article  CAS  Google Scholar 

  10. Das S, Pandey AK, Athawale AA, Manchanda VK (2009) Exchanges of uranium(VI) species in amidoxime-functionalized sorbents. J Phys Chem B 113:6328–6335

    Article  CAS  Google Scholar 

  11. Kawai T, Saito K, Sugita K, Kawakami T, Kanno JI, Katakai A, Seko N, Sugo T (2000) Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat Phys Chem 59:405–411

    Article  CAS  Google Scholar 

  12. Kawai T, Saito K, Sugita K, Katakai A, Seko N, Sugo T, Kanno JI, Kawakami T (2000) Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind Eng Chem Res 39:2910–2915

    Article  CAS  Google Scholar 

  13. Seko N, Katakai A, Tamada M, Sugo T, Yoshii F (2004) Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater. Sep Sci Technol 39:3753–3767

    Article  CAS  Google Scholar 

  14. Choi SH, Nho YC (2000) Adsorption of UO2 2+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group. Radiat Phys Chem 57:187–193

    Article  CAS  Google Scholar 

  15. Wang CZ, Lan JH, Wu QY, Luo Q, Zhao YL, Wang XK, Chai ZF, Shi WQ (2014) Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg Chem 53:9466–9476

    Article  CAS  Google Scholar 

  16. Oyola Y, Janke CJ, Dai S (2016) Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater. Ind Eng Chem Res 55:4149–4160

    Article  CAS  Google Scholar 

  17. Saito T, Brown S, Chatterjee S, Kim J, Tsouris C, Mayes RT, Kuo LJ, Gill GA, Oyola Y, Janke CJ, Dai S (2014) Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A 2:14674–14681

    Article  CAS  Google Scholar 

  18. Brown S, Yue YF, Kuo LJ, Mehio N, Li MJ, Gill G, Tsouris C, Mayes RT, Saito T, Dai S (2016) Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind Eng Chem Res 55:4139–4148

    Article  CAS  Google Scholar 

  19. Oyola Y, Dai S (2016) High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater. Dalton Trans 45:8824–8834

    Article  CAS  Google Scholar 

  20. Xing Z, Hu JT, Wang MH, Zhang WL, Li SN, Gao QH, Wu GZ (2013) Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci China Chem 56:1504–1509

    Article  CAS  Google Scholar 

  21. Hu JT, Ma HJ, Xing Z, Liu XY, Xu L, Li R, Lin CJ, Wang MH, Li JY, Wu GZ (2016) Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind Eng Chem Res 55:4118–4124

    Article  CAS  Google Scholar 

  22. Zhao YN, Wang MH, Tang ZF, Wu GZ (2010) ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays. Radiat Phys Chem 79:429–433

    Article  CAS  Google Scholar 

  23. Gao QH, Hu JT, Li R, Xing Z, Xu L, Wang MH, Guo XJ, Wu GZ (2016) Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat Phys Chem 122:1–8

    Article  Google Scholar 

  24. Liu XY, Liu HZ, Ma HJ, Cao CQ, Yu M, Wang ZQ, Deng B, Wang M, Li JY (2012) Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind Eng Chem Res 51:15089–15095

    Article  CAS  Google Scholar 

  25. Yin ZL, Xiong J, Chen M, Hu S, Cheng HM (2016) Recovery of uranium(VI) from aqueous solution by amidoxime functionalized wool fibers. J Radioanal Nucl Chem 307:1471–1479

    Article  CAS  Google Scholar 

  26. Misra SK, Bhardwaj YK, Gandhi PM (2013) Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix. J Radioanal Nucl Chem 295:471–475

    Article  CAS  Google Scholar 

  27. Mishra A, Sharma S, Gupta B (2011) Studies on the amidoximation of polyacrylonitrile films: influence of synthesis conditions. J Appl Polym Sci 121:2705–2709

    Article  CAS  Google Scholar 

  28. Pekel N, Şahiner N, Güven O (2000) Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiat Phys Chem 59:485–491

    Article  CAS  Google Scholar 

  29. An MF, Xu HJ, Lv Y, Duan TC, Tian F, Hong L, Gu Q, Wang ZB (2016) Ultra-strong gel-spun ultra-high molecular weight polyethylene fibers filled with chitin nanocrystals. RSC Adv 6:20629–20636

    Article  CAS  Google Scholar 

  30. Masoomi M, Ghaffarian SR, Mohammadi N (2004) The effect of processing conditions and matrix type on the interface of polyethylenefibre/polyethylene-matrix composites. Iran Polym J 13:381–387

    CAS  Google Scholar 

  31. Aydınlı B, Tinçer T (2001) Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: thermal, FTIR and morphological characterization. Radiat Phys Chem 62:337–343

    Article  Google Scholar 

  32. Jose J, Shehzad F, Al-Harthi MA (2014) Preparation method and physical, mechanical, thermal characterization of poly(vinyl alcohol)/poly(acrylic acid) blends. Polym Bull 71:2787–2802

    Article  CAS  Google Scholar 

  33. Gill GA, Kuo LJ, Janke CJ, Park J, Jeters RT, Bonheyo GT, Pan HB, Wai C, Khangaonkar T, Bianucci L, Wood JR, Warner MG, Peterson S, Abrecht DG, Mayes RT, Tsouris C, Oyola Y, Strivens JE, Schlafer NJ, Addleman RS, Chouyyok W, Das S, Kim J, Buesseler K, Breier C, D’Alessandro E (2016) The uranium from seawater program at the pacific northwest national laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind Eng Chem Res 55:4264–4277

    Article  CAS  Google Scholar 

  34. Kuo LJ, Janke CJ, Wood JR, Strivens JE, Das S, Oyola Y, Mayes RT, Gill GA (2016) Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater. Ind Eng Chem Res 55:4285–4293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 11605275, 11675247, 11275252, 11305241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Wu.

Additional information

Rong Li and Lijuan Pang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Pang, L., Ma, H. et al. Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity. J Radioanal Nucl Chem 311, 1771–1779 (2017). https://doi.org/10.1007/s10967-016-5117-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5117-6

Keywords

Navigation