Skip to main content
Log in

Irrversible cesium adsorption capacity of granite-origin soil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The irreversible adsorption capacity of radioactive cesium in soil of granite origin was assessed via a desorption experiment. The results demonstrated that the cesium desorption only occurred when it reached 0.035% of the cation exchange capacity, despite the presence of the competing ion (K+). The fixation of cesium on frayed edge sites, primarily ascribed to weathered mica and interpretable via the dual-site Langmuir model, may contribute to this irreversible binding. Consequently, the extraction of these minerals from granite-origin soil possesses the potential to diminish the concentration and volume of radioactive soil waste contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data is available upon request to the corresponding author.

References

  1. Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) J Environ Radioact 111:18–27

    Article  CAS  PubMed  Google Scholar 

  2. Ashraf MA, Akib S, Maah MJ, Yusoff I, Balkhair KS (2014) Crit Rev Environ Sci Technol 44:1740–1793

    Article  CAS  Google Scholar 

  3. Nakao A, Funakawa S, Tsukada H, Kosaki T (2012) Environ J Global Commun 6:17–29

    Google Scholar 

  4. Murota K, Saito T, Tanaka S (2016) J Environ Radioact 153:134–140

    Article  CAS  PubMed  Google Scholar 

  5. Tsukada H, Hasegawa H, Hisamatsu SI, Yamasaki SI (2002) J Environ Radioact 59:351–363

    Article  CAS  Google Scholar 

  6. Wang TH, Li MH, Wei YY, Teng SP (2010) Appl Radiat Isot 68:2140–2146

    Article  CAS  PubMed  Google Scholar 

  7. Mukai H, Hatta T, Kitazawa H, Yamada H, Yaita T (2014) Environ Sci Technol 48:13053–13059

    Article  CAS  PubMed  Google Scholar 

  8. Mukai H, Hirose A, Motai S, Kikuchi R, Tanoi K, Nakanishi TM, Yaita T, Kogure T (2016) Sci Rep 6:1–7

    Article  Google Scholar 

  9. Lee JS, Park SM, Jeon EK, Baek KT (2017) Appl Geochem 85:188–193

    Article  CAS  Google Scholar 

  10. Yamasaki S, Utsunomiya S (2022) J Nucl Sci Technol 59:135–147

    Article  CAS  Google Scholar 

  11. Kim GN, Oh WZ, Won HJ, Choi WK (2003) J Ind Eng Chem 9:306–313

    CAS  Google Scholar 

  12. Kim GN, Kim SS, Park UR, Moon JK (2015) Electrochim Acta 181:233–237

    Article  CAS  Google Scholar 

  13. Yanaga M, Oishi A (2015) J Radioanal Nucl Chem 303:1301–1304

    Article  CAS  Google Scholar 

  14. Song JS, Kim SI (2018) J Nuclear Fuel Cycle Waste Technol 16:41–47

    Article  Google Scholar 

  15. Song H, Nam K (2022) J Soil Groundwater Environ 27:76–86

    Google Scholar 

  16. Cornell RM (1993) J Radioanal Nucl Chem 171:483–500

    Article  CAS  Google Scholar 

  17. Sawhney BL (1972) Clay Clay Miner 20:93–100

    Article  CAS  Google Scholar 

  18. Dixon JB, White GN (1996) Soil Mineralogy Laboratory Manual: Agronomy 626. Soil & Crop Sciences Department. Texas A & M University, College Station-TX, USA

    Google Scholar 

  19. Jackson ML (1962) Clay Clay Miner 11:29–46

    Article  Google Scholar 

  20. Yudina AV, Fomin DS, Kotelnikova AD, Milanovskii EY (2018) Eurasian Soil Sci 51:1326–1347

    Article  Google Scholar 

  21. Lagergren SK (1898) Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  22. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  CAS  Google Scholar 

  23. Park CW, Kim SM, Kim I, Yoon IH, Hwang J, Kim JH, Seo BK (2021) J Environ Radioact 233:106592

    Article  CAS  PubMed  Google Scholar 

  24. Cremers A, Elsen A, Preter PD, Maes A (1988) Nature 335:247–249

    Article  CAS  Google Scholar 

  25. Wauters J, Vidal M, Elsen A, Cremers A (1996) Appl Geochem 11:595–599

    Article  CAS  Google Scholar 

  26. Vandebroek L, Van Hees M, Delvaux B, Spaargaren O, Thiry Y (2012) J Environ Radioact 104:87–93

    Article  CAS  PubMed  Google Scholar 

  27. Teppei JY, Andreas S, Ryugo SH, John FB, Sabine E, Tetsuzo Y (2011) Proc Natl Acad Sci 108:19530–19534

    Article  Google Scholar 

  28. Kaneko M, Iwata H, Shiotsu H, Masaki S, Kawamoto Y, Yamasaki S, Nakamatsu Y, Imoto J, Furuki G, Ochiai A, Nanba K, Ohnuki T, Ewing RC, Utsunomiya S (2015) Front Energy Res 3:37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (Grant number 23-3412) funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C-MC, JGK; Methodology: AL, YK; Formal analysis and investigation: AL; Writing—original draft preparation: AL; Writing—review and editing: YK; Funding acquisition: C-MC, JGK, JR; Resources: JR; Supervision: JGK, YK.

Corresponding author

Correspondence to Yeongkyoo Kim.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5391 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A., Chon, CM., Kim, J.G. et al. Irrversible cesium adsorption capacity of granite-origin soil. J Radioanal Nucl Chem 333, 289–295 (2024). https://doi.org/10.1007/s10967-023-09206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09206-7

Keywords

Navigation